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Abstract. We present an approach for joint inference of 3D scene struc-
ture and semantic labeling for monocular video. Starting with monocular
image stream, our framework produces a 3D volumetric semantic 4+ occu-
pancy map, which is much more useful than a series of 2D semantic label
images or a sparse point cloud produced by traditional semantic segmen-
tation and Structure from Motion(SfM) pipelines respectively. We derive
a Conditional Random Field (CRF) model defined in the 3D space, that
jointly infers the semantic category and occupancy for each voxel. Such
a joint inference in the 3D CRF paves the way for more informed priors
and constraints, which is otherwise not possible if solved separately in
their traditional frameworks. We make use of class specific semantic cues
that constrain the 3D structure in areas, where multiview constraints are
weak. Our model comprises of higher order factors, which helps when the
depth is unobservable. We also make use of class specific semantic cues to
reduce either the degree of such higher order factors, or to approximately
model them with unaries if possible. We demonstrate improved 3D struc-
ture and temporally consistent semantic segmentation for difficult, large
scale, forward moving monocular image sequences.
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Fig. 1. Overview of our system. From monocular image sequence, we first obtain 2D semantic
segmentation, sparse 3D reconstruction and camera poses. We then build a volumetric 3D map
which depicts both 3D structure and semantic labels.

1 Introduction

To successfully navigate and perceive the 3D world, a robot needs to infer both its
own position and information of the 3D environment. Vision-based Simultaneous
Localization and Mapping (SLAM) estimates the location of the robot while
incrementally building a map of the environment. However, SLAM only reveals
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the structural information of the scene and the result is limited to a sparse 3D
point cloud. Scene parsing, on the other hand, labels each pixel in an image
or video with object categories (e.g. Tree, Road), thus providing semantic only
information of the scene. But in many applications such as autonomous driving,
it is important to understand both the structural and semantic information of
the surroundings. In this paper, we propose a joint 3D reconstruction and scene
parsing system from a fast forward-moving monocular camera.

Autonomous driving applications often involve fast forward-moving cameras.
In these cases, multi-view stereo could fail due to textureless surfaces and/or low
parallax, and the visual SLAM pipeline for a monocular camera only provides a
very sparse set of 3D measurements. Previous work on joint reconstruction and
scene parsing [9,26] require dense depth measurements and cannot accommodate
to this problem.

Lifting the requirement of dense depth measurements, our input contains only
sparse 3D point cloud but dense semantic labels on each pixel of each frame, the
latter can be obtained through evaluating a scene parsing engine (e.g. [20]) on
all the frames. We use category-specific sensor models to enhance the depth es-
timates, especially when no direct depth information is available. On the other
hand, the knowledge of unoccupied space from successive camera positions help
to reduce a lot of 3D structural ambiguities, as well as to improve structural
estimates along weakly supported surfaces [12], where only vague structural in-
formation is available.

The 3D scene is represented in the form of 3D cubic subvolumes (voxel)
along with per-voxel semantic labels (see Fig.1). The voxel labels include both
solid semantic categories (e.g. Car) and Free, thus capturing both occupancy
and semantic information in a single coherent discrete label space. We model
the problem of labeling of all observable voxels with a higher order Conditional
Random Field (CRF) in the 3D space. Inference of the CRF model in 3D allows
for incorporating more realistic scene constraints and priors, such as 3D object
support. Besides, full temporal coherency of the semantic labels is inherent to
our 3D representation, because our 2D scene parsing is simply the projection of
3D semantic reconstruction to different camera positions. This representation is
efficient and compact with an Octree data structure where unused voxels in the
3D map remain uninitialized and require minimal storage and computation.

Our method is applicable to popular monocular sequences like Camvid [4]
which has only seen 2D segmentation results till now. Besides, our framework is
flexible and can be easily extended to other sensors like laser or stereo cameras.
It is quite efficient compared to standard multi-view stereo pipelines and still
properly deals with noisy measurements and uncertainty. Thus, our method
could find immediate use in many applications like autonomous robot navigation.

3D geometric information plays an important role in 2D semantic segmenta-
tion [2,27,19,6]. For example, Brostow et al. [2] incorporate sparse SfM features
with 2D appearance features for each frame, and demonstrated its advantage
over 2D appearance features alone. Ladicky et al. [19] propose a joint opti-
mization of dense stereo and semantic segmentation for every frame. However,
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temporal consistency of the segmentation is not considered in their methods.
Several recent attempts [6,24,31] have addressed temporal continuity, either by
pre-processing with supervoxel-based video segmentation [31], or by additional
higher order potentials that enforce label consistency among projections of the
same 3D point [6]. Still, most of these methods run in the 2D image space only.
Our volumetric representation performs inference in 3D and achieve full tempo-
ral coherency without additional cost.

Semantic segmentation can be used to estimate 3D information [22,10,25].
For example, Liu et al. [22] guide the 3D reconstruction from a single image
using semantic segmentation. Depth from semantics, though not as reliable as
the SfM or multi-view stereo, has its own strengths: (1) it is complementary
to the traditional geometric approaches; (2) it offers a potential denser depth
measurement than SfM; (3) it is applicable for a larger range of sceneries than
multi-view stereo. For a fast forward-moving monocular camera, the SfM gives
very sparse point cloud and the multi-view stereo fails due to low parallax,
whereas we can still rely on segmentation results.

The most relevant work are [9,26] who have independently proposed methods
for simultaneous semantic segmentation and 3D reconstruction. However, both
of these methods require dense depth measurements. Dense depth maps allow
them to make relatively restrictive assumptions, e.g. Haene et al. [9] consider
every pixel with missing depth as Sky. These assumptions do not hold in case of
fast forward-moving monocular camera, where we only have a very sparse point
cloud from SfM. Unlike [26], we propose a joint optimization scheme of both
semantic segmentation and 3D reconstruction. And unlike [9], we use semantic
category specific sensor models to estimate the depth as much as possible, instead
of simply inserting Free labels for voxels with missing depth.

We explicitly model Free space. For applications like autonomous driving,
Free space information is directly used in higher level tasks like path planning.
Also, Free space provides cues to improve 3D reconstruction, especially along
weakly supported surfaces [12] which is very common with forward moving cam-
eras in urban scenes. In our framework, the Free space information from other
cameras helps to reduce ambiguities in 3D structure.

This paper makes the following contributions:

— From a fast forward-moving monocular camera, we introduce a novel higher
order CRF model for joint inference of 3D structure and semantics in a 3D
volumetric model. The framework does not require dense depth measure-
ments and efficiently utilize semantic cues and 3D priors to enhance both
depth estimation and scene parsing.

— We present a data-driven category-specific process for dynamically instanti-
ating potentials in the CRF. Our method performs tractable joint inference
of 3D structure and semantic segmentation in large outdoor environments.

— We present results on challenging forward-moving monocular sequences such
as CamVid and Leuven which demonstrate the value of our approach. The
results have shown improved temporal continuity in scene parsing as well as
improved 3D structure.
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2 Problem Formulation and Notation

We are interested in the 3D map M comprising of several sub-volumes m; € M.
Where each m; is a categorical random variable corresponding to voxel i, that can
be either Free or one of the solid semantic objects like Road, Building, Tree, etc.
For example in the Camvid [4] dataset, we used a 9 dimensional label space L4 =
{Free, Road, Building, Sidewalk, Tree, Fence, Person, Car, UnknownSolid}. Note
that this joint label space, L4 is mutually exhaustive and is different from the
label space L7 of 2D image level semantic categories. For example there is no
Sky in L4, a common state used in 2D image scene parsing. Choosing this label
space L allows us to do the joint inference of both semantic category and and
3D structure of the scene with a single random variable per voxel.

Each pixel location x € §2 in the images is a source of potential measurement,
where 2 = {1..h}x{1..w}, with w, h € Z* being image size. We have two kinds
of measurements : with-depth measurements denoted by z" and semantic-only
measurements denoted as z°. Each measurement has an associated semantic
label I € Lz, obtained from the 2D semantic classifier output (§ 6.2) at that
pixel. Each with-depth measurement has an additional depth d € R information,
which in our case is obtained from visual SLAM (§ 6.1).

The observed data is composed of all the measurements and camera poses
ie. D = {z].p,2}.o,81.7}, Where z].p, 7], and gi.7 respectively denotes the
set of with-depth measurements, semantic-only measurements and camera tra-
jectory up-to time 7', which in our case is simply equivalent to number of images
processed. Each g; € SE(3) is a single camera pose from the camera trajectory.
Since we have multiple number of with-depth and semantic-only measurements
per frame, we index them using p and q respectively, where 1<p<P and 1<¢<Q.
Also we only have very sparse depth measurements, so P < Q.

We use subscript notation to denote associated camera pose, pixel semantic
label, co-ordinate and depth (if available) for a particular measurement. Thus
for a semantic-only measurement zg, [, € L7 denotes 2D image semantic label at
pixel coordinate x4 with camera pose g4. Similarly for p-th with-depth measure-
ment 2, d, encodes the depth of the associated 3D point X, measured along
the ray emanating from pixel location x, with semantic label [, and taken from
camera pose g,. We will sometime drop the superscript in z, when the type of
measurement z" (with-depth) or z* (semantic-only) does not matter.

A single measurement z; only affects a subset of voxels m; € M. For our
camera sensor, these voxels are a subset of the voxels lying along the ray ema-
nating from camera center through the corresponding image pixel coordinate of
the measurement, denoted as Ry = Ray(z, gr). Thus the set of voxels affected
by a particular measurement 2, ( or z;) is represented by m;, € R, (m, € R).

3 Probabilistic Model

We utilize a discriminative CRF model on P(M|D) to avoid directly modeling
the complex dependencies [21,28] among correlated sources of with-depth and
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semantic-only measurements. Unlike traditional occupancy grid mapping [30]
we do not assume each m; as independent from each other. Instead, we make
use of the standard static world conditional independence assumptions of each
measurement z; given the map M, and independence of the map M w.r.t.the
camera trajectory gi.r. Given these assumptions, we can factorize the posterior
over map M given all the observation data

P(M|D) X P(M‘gl'T)P(Z§:P7Zi:Q|M7gl:T)

P Q
s
M) [T P(IMogp) [T P25 M.g0) (1)
p=1 q=1
P Q
H P(z,|myp,g,) H P(zg|mq,g4) (2)
p=1 N——— -1 N——
pI‘lOI‘ forward with-depth a forward semantic-only
measurement model measurement model

where the conditional independence assumptions were applied to obtain (1), and
since each measurement is only dependent on a subset of voxels in M, we can
further reduce (1) to get (2). (2) uses forward sensor measurement model [30)]
(measurement likelihood). However, if we adopt this factorization, we would need
to learn a complicated sensor model in order to parametrize the forward sensor
likelihoods P(zx|my, g ). Reapplying Bayes rule on (2), we get the inverse sensor
model version as

2 P( mP|Zp7gP < m‘Z‘qu.QQ)
P(M|D) x P(M) | | | | 3)
=1 g=1
prior —,—1 %,—/
inverse with-depth inverse semantic-only
measurement model measurement model

which provides the hints that our factors should be similar to posterior proba-
bilities. We can rewrite both (2) and (3) in terms of factors [16]:

P
1
P(M|D) = 7 Yr(M) H V7 (my;zy,,9p) H ¥ (mg;23,9) (4)
( v p=1 q=1
with-depth semantic-only
prior factor measurement factors measurement factors

where Z(D) is the partition function over the observed data. We now discuss the
prior factor and the measurement factors.

Priors: In the above P(M) or the prior factor ¢, encodes the prior distribution
over the huge set of all possible EW | maps. However most of these maps are
highly implausible and we can enforce some constraints in form of priors to
improve our solution. We enforce the following priors over the map:
— Spatial smoothness: Our 3D world is not completely random and exhibits
some sort of spatial smoothness.
— Label compatibility: Certain pair of classes are more/less likely to occur
adjacent to one another. For example a Car voxel is unlikely to be adjacent
to a Building voxel.
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— 3D Support: For most solid semantic categories (with the exception of
Tree), an occupied voxel increases the chance of the voxels below it to belong
to the same occupied category.

— Free space Support: Free space provides cues to improve 3D reconstruc-
tion along weakly supported surfaces [12]. Highly-supported free space bound-
aries are more likely to occupied.

We model spatial smoothness and label compatibility using pairwise potentials
(§ 4.4). 3D and Free space support constraints are implemented with unary po-
tentials (§ 4.1). Therefore, our ¥, (M) factorizes into pairwise and unary factors.

Measurement Factors: Measurement factors ¢ (my;z,,9,) and ¥d(mgy;2;,9,)
encode the constraints imposed by a particular with-depth and semantic-only
measurement respectively. In general, this forms a higher order clique involving
multiple voxels my C M. However for certain kind of measurements, e.g. with-
depth measurements or semantic-only measurements with Sky label, the factor
(my|zg, gr) can be approximated by a product of unaries on each voxel in my.
For example when we have a with-depth measurement, all voxels along the ray
from camera center till the observed depth are more likely to Free. And the voxel
corresponding to the observed 3D point is likely to belong to a solid semantic
category. We use category-specific measurement models (described in § 4.2 and
§ 4.3) which can be either unary factors or higher order factors.

CRF Model: As discussed in the above two paragraphs we model the prior
factor and the measurement factors in (4) with unary, pairwise and higher order
potentials. Thus, rearranging the factors in (4) in terms of their arity, we get

P(M|D) = ku mi) [ ¢w(mimy) [] vn(mzr) (5)

i, JEN ReR

Here ! (m;) is the unary potential defined over each m;, and encodes local evi-
dence. The pairwise potential, 1, (m;,m;) over two neighboring voxels falling into
a neighborhood N enforces spatial smoothness and label compatibility among
them. Higher order cliques 9,(mpg) are defined over set of voxels mp along
some ray emanating from a 2D image projection and helps with missing depth
information. Fig.2(a) shows the corresponding factor graph H of the model.

A single semantic-only measurement z; for certain classes is ill-posed for
updating states of the affected voxels m, since we do not know which voxel
reflects back the measurement. Héne et al.[9] simply updates all m, with Free
unaries for measurements missing depth, which is clearly an improper model. In
our approach, we handle such measurements without range/depth, by forming
higher order factor connecting voxels along a ray. However a naive approach will
lead to forming huge higher order cliques and since every pixel in every image
is an potential measurement, and inference in the graphical model can become
intractable very soon. To circumvent this issue, whenever applicable, we make
use of semantic cues to model them with unaries or at least reduce the scope of
such higher order factors.
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Fig. 2. (a) Factor Graph H of our framework. (b) Illustration of sensor models and higher
order Ray factors. See text for more details.

4 Potentials

4.1 Basic Unary Potentials

We have different types of measurements, and they affect m; differently. For
example 3D depth measurement alone do not contain any semantic label infor-
mation and influence all semantic label probabilities equally. Also each category
of semantic observation affects the belief state of a voxel m;, differently than
others. We define the following two basic forms of unary measurement factors:

0.6 i o 0.3 if m; = Free
. if m; = Free .
1/)Mlss(mi): 0.4 . and w]l_m_(mi): 0.55 ifm; =1 (6)
IAviEST if m; # Free 015 o a0l R
o=z i mig{l, Free}

Fig.3 illustrates the measurement factors 15 and 15224, Note that, we have
made use use of inverse sensor model P(m|z,g) for these factors. This is moti-
vated by the fact that, it is much more easier [30] to elicit model parameters for
P(m|z, g) compared to the forward sensor likelihoods P(z|m, g), and can be done
without resorting to complicated sensor model learning. We kept the parameters
same as that of laser based occupancy sensor model used in [11].

The unary potential ! (m;) combines all the unary measurement factors
that affect m;. Thus the final unary potential over a voxel is factor product of a
certain number of g5 and % factors only.

b (m:) = WJMISS(mi)]NM H W’ém(mi)]Nm (M)
leLz\Sky

where Ny, is the total number of MISS unary factors over m; and Npg; being
the number of HIT factors over m; for semantic category . Fig.3(c) depicts the

factor graph view of this potential.
As new measurements are obtained, we keep on inserting new factors into the
affected voxels. The set of voxels affected, and the kind of unary factors that gets
inserted depends on the measurement type (discussed in next two subsections).

4.2 Measurements with depth

We use a projective camera sensor model, wherein the basic assumption is that
each measurement is formed by reflection from a occupied voxel at some par-
ticular depth, and all voxels from the camera center to that depth are Free.
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Fig.3. a) and b) illustrates the miss and HIT factors. ¢) Computation of per voxel unary
potential as a product of unary contributions of several measurements affecting that voxel.

So for all voxels from camera center till the observed depth, we insert a MISS
factor which increases the probability for these voxels being Free. And for the
voxel corresponding to the observed 3D point X,,, we insert a HIT factor which
makes the probability of belonging to a particular solid semantic state high. Our
framework is not limited to monocular only system, the same approach can also
be extended to a Laser+Vision system, where measurements from lasers affect
all solid semantic category probabilities equally.

4.3 Semantic only Measurement

With sparse reconstruction most points in the image do not have direct depth
measurements. However certain classes of measurements still provide a good
estimation of depth. Observing Sky tells us that all voxels along the observed
ray are more likely to be Free. Fig.4 LEFT shows average depth for some semantic
categories across different parts of the image. We computed these statistics on the
sequence seq05VD of Camvid. We first form a uniform 2D grid over the image,
and then for each such grid in the image, we accumulate the depths from visual
SLAM point clouds whose projection on the image lie on that grid. This gives us
information about how good a semantic-only measurement z; is in estimating
the 3D depth. For each semantic class, all measurements with 2D projection x
lying on the same grid gets same statistics. Two kind of statistics are computed
for each such possible (Ig,z4) € Lz x {2 measurement. The min depth and
maz depth for each (Ig,z,) tells us the minimum and maximum possible depth
along pixel co-ordinate z, for 2D semantic category l,. We then also estimate
inverse sensor model P(my|27, g4). Fig.4 shows the plots of inverse sensor model
along with min/max depth for two specific semantic-only measurements, (I, =
Road, z, = [400,700]) and (I, = Building, z, = [100,300]). When the statistics
shows a small min-to-max bound e.g. Road and the inverse sensor model has a
high peak, we insert unary factors according to this inverse sensor model.
However for certain classes like Building, depth uncertainty is too high to
make it effective, since they can occur at different depths. Using unaries for
these measurements introduces a lot of artifacts. So for these class of semantic-
only measurements we construct a higher order factor involving all the voxels
along the ray that lie between min depth and max depth computed for that
semantic measurement. Solid semantic-only measurements like Building, tree,
even though does not say much about the depth, confirms the fact that there
is at least one occupied voxel along the ray induced by that observation. Our
Higher order Ray Potential simply encodes this fact and can attain only two
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possible values:

n(mp) = o if atleast one of mpg is —Free ®)
RBRI =N 8 if all of mg is Free

where mp, is set of voxels along a particular ray involved in the factor and a> 0.
We make use of the class specific prior knowledge of the minimum depth and
maximum depth of the reflecting voxel along a particular 2D back-projection.
So for a ray factor i, (mpg) caused by a measurement z;, mg = {m; : m; €
Rq,min(ly, zq) < depth(m;, gq) < maz(ly, xz4)}. This reduces the number of vox-
els jmp| involved in ¢y, (mpg), which could otherwise be very large (see Fig.2(b)
for illustration). A further reduction is facilitated by strong free space measure-
ments (see § 5.3). In contrast, the higher order factors used in [23] involve all the
voxels starting from the camera. Another contrast to [23] is that our ray factor
captures single view constraints which is orthogonal to multiview higher-order
factors of [23] requiring costly photoconsistency computations across multiple
views. Note that the higher order factor (8) is a sparse one and its of the same
form as P™ Potts model [15] (a special case of Pattern potentials[17]) which
allows us to do tractable inference (§ 6.3).
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Fig. 4. LEFT: Average per category depthmap of Camvid [4] (subsequence # seq05VD) for
Fence, Road, Sidewalk and Building. RIGHT: shows the inverse sensor model P(m;|z, gq) for
voxels ¢ along the ray emanating from 2D point x4 as function of depth from camera center.
(a) shows the inverse sensor model for a Road point measurement at 2D point co-ordinate,
xq = [400,700]. (b) row shows the inverse sensor model for a Building observation at point
[100, 300]. The plots also shows the min and max depth for these measurements.

4.4 Spatial smoothness and Label compatibility

The pairwise factor zbg(mi, m;) enforces spatial smoothness and label compati-
bility between pairs of neighboring voxels defined by 3D neighborhood N. Thus
each voxel can have a maximum of 26 pairwise factors. The pairwise factors ’(/Jg
are also dependent on relative direction d (horizontal or vertical) between the
voxels. This allows us to capture properties like Road or Sidewalk voxels are
more likely to be adjacent to each other in horizontal direction. So our pairwise
potential is like Potts model, except that we set different weights for certain
specific pairs of labels. To prevent Free voxels encroach other solid voxels, we set
a lower cost for a wg(mi = Free,m; # Free) than other pairs in Lq X L.
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5 Data-driven Graphical Model Construction

The final graphical model is dynamically constructed and fully specified once all
unary potentials has been computed.

5.1 Data Structure for Scene Representation

We use an octree based volumetric data structure which provides a compact
storage of the scene. In the octree representation, when a certain subvolume ob-
serves some measurement, the corresponding node in the octree is initialized. Any
uninitialized node in the octree represents Unknown areas. Unknown voxels are
not included in the space over which we construct the graphical model and run
our inference algorithm. This is different than other common approaches [23,9]
of inferring over all voxels within a bounding box.

Of all factors used in our model, only the unary factor ¢, is of different values
for every m;. All other factors like pairwise factors i, or higher order ray factors
1, even though has different scopes, are fixed functions and we need to just
store only one instance of them. Each node of the octree stores the local belief
bel(m;) (as log probabilities) which is equal to the prior probability at time zero,
and is incrementally updated to yield the final unary factor ¢ (m;). Thus unlike
a naive approach, we do not need to explicitly store all measurements, which is
huge even for a short video sequence. Also note that all other factors apart from
% are either precomputed, can be computed directly from voxel co-ordinates or
from 1% itself without needing access to the raw measurement data.

5.2 Clamping

Even for nodes which have been initialized, if the local belief bel(m;) for a par-
ticular state € L4 has reached a very high probability (we used 0.98), we fix
m; to that state and treat it like evidence. This clamping of voxels which are
already very confident about its label, reduces the total number of variables
involved in the inference and also the scope of pairwise/higher-order factors at-
tached to them. A pairwise factor between m; and m; gets reduced to unary
factor ¢ (m;) = p(mi, m; = Free), when m; gets clamped to Free label. In
Fig.2(a), the shaded node @ represents such a clamped voxel and B denotes the
reduced pairwise factors. Clamping of confident voxels and conservative gener-
ation of set of voxels over which we do the final inference, allows us to scale to
longer sequences and not just scenes with a small fixed bounding box.

5.3 Scope Reduction of Higher Order Ray Potentials

Since the final graphical model structure H is computed only after all the unary
potentials have been computed, it allows for further reduction of number of
voxels |mp| involved in higher order ray factors (8). We illustrate this with help of
Fig.2(b). Suppose Cameral receives a semantic-only measurement, which results
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in a higher order ray factor involving voxels lying between min and max depth
for that measurement. But strong free space measurements coming from other
cameras (e.g. Camera2 in Fig.2(b)) helps us in further reducing the number of
voxels |[mp| in the scope of that ray factor.

5.4 3D support and Free space support

Most solid semantic categories (with exceptions e.g. Tree) have a 3D support,
as in an occupied voxel increases the chance of the voxels below it to belong
to the same occupied category. So for voxels which have been clamped to se-
mantic categories like Building, Fence, Pole, we insert a extra HIT unary factor
corresponding to the same semantic category for all voxels lying directly below.

As shown by [12], highly-supported free space boundaries are more likely
to be occupied. This is important for driving sequences, since most surfaces like
road are very weakly supported by measurements. For voxels for which have been
clamped to Free, we first check if there are Unknown voxels directly adjacent to
it. If upon back-projecting these Unknown voxel coordinates to the images, we
get a strong consensus in a solid semantic label: we initialize that voxel node
and insert a single HIT unary factor corresponding to that label.

6 System Pipeline

With input monocular images, we first perform visual SLAM and an intial 2D
scene parsing using standard semantic segmentation methods [20,18]. We then do
a data-driven graphical model construction (§ 5.1) based on these measurements,
followed by a final inference step.

6.1 Visual SLAM

Visual SLAM estimates the camera trajectory gi.; and sparse 3D point cloud
{X} where g; € SE(3) and X € R3. We do frame-to-frame matching of sparse 2D
feature points, followed by RANSAC based relative pose estimation to obtain an
initial estimate of the camera poses. A further improvement in feature tracking
is obtained by rejecting matches across a image pair if the matched points lie
on areas labeled as different semantic categories by the 2D semantic classifier.
Finally we use bundle adjustment [13,1], which iteratively refines the camera
poses and the sparse point cloud by minimizing a sum of all re-projection errors.
Once bundle adjustment has converged, we obtain a set of sparse 3D points and
corresponding camera poses from which each of these points have been observed.

6.2 Initial 2D Scene Parsing

We use the unary potentials used by Ladicky et al. [20] consisting of color,
histogram of oriented gradients (HOG), pixel location features and several filter
banks. We then use the dense CRF implementation of [18] to get the baseline 2D
scene parsing. Since we directly work from per pixel semantic labels, any other
scene parsing method can be used instead.



12 A. Kundu, Y. Li, F. Daellert, F. Li and J. M. Rehg

6.3 Inference Algorithm

For doing inference over the graphical model, we use the maximum a-posteriori
(MAP) estimate M* = argmax,, P(M|D) to assign a label to to each m;. The
rationale behind MAP is the big progress [14] of efficient approximate MAP
inference in recent years. We use a modified message passing implementation of
[11]. We use tree-reweighted (TRW) [32] messaging schedules. For computing
messages to and from the higher order factors (8) we use the approach of [29].
Since our higher order factors (8) are sparse, all n outgoing messages from these
higher order factors can be computed in O(n) (O(l) amortized) time.

7 Experiments and Evaluation

Since we are jointly estimating both 3D structure and semantic segmentation,
it is expected that we improve upon both of them. In this section we define the
evaluation criteria for measuring the above and show results to verify our claim.

We demonstrate results of our method on Camvid [1] and Leuven [5,19] datasets.
Both these datasets involve difficult fast forward moving cameras and has been
standard dataset for semantic segmentation papers [3,19,31,24,6]. Leuven dataset

contains stereo image pairs, but we demonstrate results only using monocular
(left) images. To the best of our knowledge, we are not aware of any other work
which has demonstrated joint 3D reconstruction and semantic segmentation on
these standard monocular datasets. We additionally provide results on small sub-
sequence of KITTTI [38], again using monocular (left) images. Additional results
and videos are available at the project website! and in supplementary material.

7.1 3D Structure Quality

We vastly improve upon the baseline 3D structure estimated through tradi-
tional SfM approach. Fig.6 shows some of our 3D reconstructions of a part of
Camvid [1]. Note the improvement obtained over state of the art multi-view
stereo [7] and sparse SfM in Fig.6. In the Leuven sequence, shown in Fig.5, we
compare against the stereo based 2.5D method of Ladicky et al. [19] for joint seg-
mentation and stereo. We back-project our 3D semantic map onto the cameras
to obtain per frame depth/disparity image. Fig.5 qualitatively demonstrates the
better quality of our 3D structure estimate, both in comparison to the stereo
disparity maps and to baseline sparse SfM, even though only monocular(left) im-
ages were used compared to stereo method of [19]. In Fig.7, we compare against
unary-only results with LIDAR sensor in KITTT [3].

7.2 Segmentation Quality

From our 3D joint semantic map, we can obtain 2D segmentation result by sim-
ply back-projecting it to each camera views. We evaluate segmentation quality

! nttp://www.cc.gatech.edu/~akundu7/projects/JointSegRec
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Fig. 5. Leuven [19] Results. (a): the output semantic reconstruction of the Leuven sequence,
using only left (monocular) images. Free voxels are not shown for clarity. Note the improvement
compared to initial SEIM pointcloud. (b) Comparisons with the stereo method of Ladicky et
al. [19], by using monocular (left) images only. We obtain 2D depth maps by back-projecting
our 3D map onto the cameras. Notice the significant improvement over the depth maps of [19]
when compared to the hand labeled disparity image provided by [19].

Fig. 6. CamVid [4] Results. LEFT: Top row shows two consecutive input images, middle row
shows baseline 2D segmentation and bottom row shows 2D segmentation obtained by back-
projecting our 3D semantic map. Note the temporal inconsistency in baseline 2D segmentation
(middle row). RIGHT: a) 3D reconstruction and camera trajectory from Visual SLAM. b) Our
3D semantic + occupancy map using the same legend as in Fig.1. Free voxels are not shown
for clarity. ¢) shows the same map, but textured. d)Reconstruction result by PMVS2 [7]. Note
the improvement in our map (b,c) compared to sparse SfM(a)and PMVS2(d).

;n y—— —d s 7 X “‘E‘&% #YAL - — oA _“il_ e SN
Fig. 7. KITTI [8] Results (seq 05). LEFT: We use LIDAR measurements available in KITTI
using only the unary potentials described in this paper. RIGHT: Results with monocular (left)
images and our full CRF model. As can be seen in the figure, even with just monocular images,
we are able to achieve more complete reconstruction. For fair comparison, we only used those
laser rays from the 360° LIDAR that can be seen by the left camera.
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Building Road Car Sidewalk Sky Tree Fence All

H(bits) Acc(%) H(bits) Ace(%) H(bits) Acc(%) H(bits) Ace(%) H(bits) Ace(%) H(bits) Ace(%) H(bits) Acc(%) H(bits) Acc(%)

CAMVID
5eq05VD

Ours 0.0 98.30 0.0 97.77 0.0 95.75 0.0 98.33 NA 99.27 0.0 83.63 0.0 73.74 0.0 95.51
[20] 0.114 98.52 0.024 95.99 0.231 89.41 0.177 96.53 NA 99.81 0.168 83.02 0.299 75.59 0.095 94.58
[24] 0.114 94.78 0.016 98.85 0.106 99.69 0.184 94.11 NA 99.21 0.173 80.34 0.249 39.06 0.084 92.41
[31] 0.025 95.01 0.004 98.97 0.046 99.87 0.062 73.17 NA 99.26 0.037 74.08 0.107 4.38 0.019 87.88
Building Road Car Sidewalk Sky Bike Pedestrian All

H(bits) Acc(%) H(bits) Acc(%) H(bits) Acc(%) H(bits) Ace(%) H(bits) Ace(%) H(bits) Ace(%) H(bits) Ace(%) H(bits) Ace(%)

LEUVEN

Ours 0.0 96.51 0.0 99.40 0.0 91.78 0.0 66.97 NA 95.30 0.0 83.82 0.0 NA 0.0 95.74
[19] 0.046 95.84 0.116 98.75 0.150 91.42 0.429 74.89 NA 93.29 0.264 84.68 0.686 61.76 0.094 95.24

. Building Road Car Sidewalk Sky Tree Fence All
Krrri

5eq05

H(bits) Acc(%) H(bits) Acc(%) H(bits) Acc(%) H(bits) Ace(%) H(bits) Ace(%) H(bits) Ace(%) H(bits) Acc(%) H(bits) Acc(%)

Ours 0.0 98.90 0.0 98.72 0.0 96.95 0.0 98.35 NA 99.37 0.0 96.45 0.0 96.34 0.0 97.20
[20] 0.165 97.47 0.113 87.85 0.203 98.14 0.158 96.00 NA 99.75 0.129 97.47 0.220 91.55 0.163 95.15

Table 1. 2D Segmentation evaluation. For evaluating temporal consistency, we give average
Entropy H of SfM feature tracks (See § 7.2). Our results gives perfect zero entropy compared
to non-zero entropy (indicating temporal inconsistency) for [24,31,19,20]. We also show the per
pixel label accuracy. We again obtain the best results. Best scores has been highlighted.

in terms of both per pixel segmentation label accuracy and also temporal consis-
tency of the segmentation in videos. We achieve significant improvement in both
the measures over state of the art. To evaluate temporal consistency, we first se-
lect a set of confident SfM feature tracks which has very low re-projection errors
after bundle adjustment. So these static 3D points should ideally be having same
label from all the images it is visible from. So lower entropy (less changes in la-
bels) for these SfM feature tracks is an indication of better temporal consistency.
Table 1 shows the entropy scores for several state of art methods[24,19,31,20]
where a higher entropy (in bits) indicates more temporal inconsistency. As a
consequence of our model and 3D representation we achieve perfect consistency.
We also evaluate per-pixel label accuracy and as shown in Table 1, our method
achieves a noticeable gain over state of the art. The supplementary material has
more discussion on these results.

8 Conclusion

We presented a method for joint inference of both semantic segmentation and 3D
reconstruction, and thus provides a more holistic 3D understanding of the scene.
Our framework offers several advantages : (a) Joint optimization of semantic
segmentation and 3D reconstruction allows us to exploit more constraints and
apply more informed regularization achieving improvement in both the tasks;
(b) The 3D graphical model allows to incorporate more powerful 3D geometric
cues compared to standard 2D image based spatial smoothness constraints; (c) It
works for difficult forward moving monocular cameras, where sparse SfM is the
only robust reconstruction method, and obtaining dense depth maps (required
by [9,26]) is difficult; (d) We obtain full temporally consistent segmentations,
without ad hoc constraints as in other 2D video segmentation methods [6,24,31];
(e) The output is in the form of a 3D volumetric semantic + occupancy map,
which is much more useful than a series of 2D semantic label images or sparse
pointcloud and it thus finds several applications like autonomous car navigation.
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