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Abstract— A common prerequisite for many vision-based
driver assistance systems is the knowledge of the vehicle’s own
movement. In this paper we propose a novel approach for esti-
mating the egomotion of the vehicle from a sequence of stereo
images. Our method is directly based on the trifocal geometry
between image triples, thus no time expensive recovery of the
3-dimensional scene structure is needed. The only assumption
we make is a known camera geometry, where the calibration
may also vary over time. We employ an Iterated Sigma Point
Kalman Filter in combination with a RANSAC-based outlier
rejection scheme which yields robust frame-to-frame motion
estimation even in dynamic environments. A high-accuracy
inertial navigation system is used to evaluate our results on
challenging real-world video sequences. Experiments show that
our approach is clearly superior compared to other filtering
techniques in terms of both, accuracy and run-time.

I. INTRODUCTION

The estimation of the movement of a camera, especially

a stereo-camera rig, is an important task in robotics and

advanced driver assistance systems. It is also a prerequisite

for many applications like obstacle detection, autonomous

driving, simultaneous localization and mapping (SLAM) and

many other tasks. For all of these applications, the relative

orientation of the current camera frame with respect to

the previous camera frame or a static reference frame is

needed. Often, this localization task is performed using

imprecise wheel speed sensors and inertial measurement

units (IMUs) [13] or expensive high-accuracy IMUs. In

recent years, camera systems became cheaper, more compact

and the computational power even on standard PC hardware

increased dramatically. This is why high resolution images

can be provided at high frame rates and processed in real-

time. The information given by such images suffices for

precise motion estimation based on visual information [1],

called visual odometry (e.g., Nistér et. al. [19]).

Compared to other sensors, visual odometry promises several

advantages: One main advantage of visual odomentry is the

high accuracy compared to wheel speed sensors. Especially

in slippery terrain where wheel speed sensors often yield

wrong motion estimates, visual odometry is more precise

[12]. Other approaches use GPS sensors or IMUs to mitigate

this effect. Drawbacks of GPS- or IMU-based approaches are

the low accuracy and the high sensor costs respectively. The

local drift rates given by visual odometry are mostly smaller

than the drift rates given by IMUs except for expensive high-

accuracy hardware which fuses GPS-measurements with

inertia sensor information [13].

In this work we estimate the relative displacement between

two consecutive camera positions using stereo sequences

captured in urban environments. Such data is especially

challenging due to the presence of independently moving

objects, which violate the static world assumption. To deal

with outliers a rejection step based on random sampling is

proposed and evaluated. The 6 degrees of freedom (6DoF)

egomotion is estimated merely from image measurements.

No additional information such as odometry data or GPS

information is used as in [1] or [7]. Furthermore we do

not restrict the degrees of freedom by using a special

(nonholonomic) motion model, making our approach widely

applicable.

A. Related Work

In recent years many algorithms for visual odometry have

been developed, which can roughly be devised into two

categories, namely methods using monoscopic cameras (e.g.,

[27]) or methods using stereo rigs. These approaches can

be further separated into methods which either use feature

matching (e.g., [13], [25], [26]) between consecutive images

or feature tracking over a sequence of images (e.g., [24],

[7], [2], [14]). If a calibrated multi-ocular camera setup is

available, the 3-dimensional scene can be reconstructed via

triangulation. Based on the point clouds of the static scene

in two consecutive images, the iterated closest point (ICP)

algorithm is often used for egomotion estimation as described

in [18]. Monocular cameras mainly require tracking image

features (e.g. corners) over a certain number of images. Using

these feature tracks, also the scene structure can be computed

using structure from motion [19]. In most cases, the multi-

ocular algorithms yield better performances than monocular

approaches [4]. Additionaly, if multi-camera approaches are

used, the scale ambiguity present in the monocular case is

eliminated [1]. Further approaches combine visual odometry

with other sensors to increase the accuracy of the results and

reduce drift, a problem inherent to all incremental positioning

methods. While Dornhege et. al. [7] additionally make use

of an IMU, Agrawal et. al. (e.g., [1], [3], [2]) use GPS and

wheel encoders, thus fusing a wide variety of sensor types

for optimal performance. Clearly, the use of GPS information

limits drift due to the system’s global nature. Furthermore,

approaches making assumptions about the observer’s motion

have been developed. For example, Scaramuzza et. al. [20]



use nonholonomic constraints of wheeled vehicles in order

to reduce the motion model’s parameter space.

Compared to the method proposed by [2], where a visual

odometry algorithm based on bundle adjustment [8] is com-

bined with IMU and GPS data, the focus of our approach

lies on estimating the motion solely based on visual inputs.

Because of the higher computational complexity of bundle

adjustment compared to frame-to-frame motion estimation

we employ the latter method. Our visual odometry algorithm

is briefly summarized in the next section.

B. System Overview

We propose an algorithm for egomotion estimation

in all six degrees of freedom using a fully calibrated

stereo-camera rig, i.e. the intrinsic as well as the extrinsic

calibration parameters are given. It is noteworthy, that the

calibration is not assumed to be fixed over the sequence,

such that the proposed approach can also be applied to

active stereo-camera rigs.

In a first step, we extract and match corner-like image

features between two consecutive stereo image pairs. Based

on these feature correspondences, the egomotion of the

vehicle is estimated using the trifocal tensor which relates

features between three images of the same static scene.

A similar approach is introduced by Yu et. al. [28] using

a monocular camera. We extend this approach to stereo

camera rigs to gain robustness and avoid scale ambiguity.

Furthermore we use an Iterated Sigma Point Kalman Filter

(ISPKF) to cope with the non-linearities in the measurement

equation. Outliers are detected via a random sample

consensus (RANSAC) based outlier rejection scheme [20].

This procedure guarantees, that outliers which stem from

false matches or features located on independently moving

objects are rejected prior to the final motion estimation

step. Thus our algorithm can also be deployed in dynamic

environments. We do not require tracked image features

over multiple frames. Instead feature matches between

consecutive stereo image frames are sufficient, hence not

requiring any reinitialization procedure like most tracking

approaches [28].

The remainder of this paper is organized as follows:

Section II describes our camera model and the relations

between point correspondences in image triples. In Section

III the proposed approach is introduced. Experimental

results of the proposed method using image sequences

captured in urban environments are given in Section IV. We

close the paper with a short conclusion and an outlook on

future work.

II. GEOMETRY OF IMAGE TRIPLES

A. Camera Model

This section describes the camera model used in the

proposed approach.

Let K be the 3 × 3 calibration matrix which encapsulates

the intrinsic parameters of the camera. The mapping between
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Fig. 1: Relationship between corresponding points in three

images. This figure depicts the point-line-point transfer which

maps a given point correspondence xA ↔ xB into the third

image, assuming that the trifocal tensor T between the three

images is known.

the camera coordinates XC and the homogeneous image

coordinates x̃ can be described as follows [11]:

x̃ = (u, v, w)
T

= K · XC (1)

Here (̃.) denotes homogeneous notation. In general, the

camera coordinate frame and the world coordinate frame

are not aligned, but the two coordinate frames are related

via a translation vector t and a rotation matrix R, the

extrinsic calibration of the camera. Given a 3-dimensional

point XW = (XW , YW , ZW )
T

in the world reference frame,

the corresponding point XC = (XC , YC , ZC)
T

in the camera

coordinate frame is computed via:

XC = R · XW + t (2)

Combining equations (1) and (2) the mapping of a 3d object

point onto the image plane is described as

x̃ = P · X̃W (3)

where P = K ·
[
R|t

]
is a 3 × 4 projection matrix [11].

B. Relationship between three Images

The 3× 3× 3 trifocal tensor T describes the relationship

between three images of the same static scene. It encapsula-

tes the projective geometry between the different viewpoints

and is independent from the structure of the scene.

Knowing the projection matrices of the three cameras, i.e.

PA = KA ·
[
RA|tA

]
, PB = KB ·

[
RB |tB

]
and PC =

KC ·
[
RC |tC

]
, the entries of the trifocal tensor are given by

T qr
i = (−1)

i+1 · det



∼ ai

bq

cr


 , (4)

where ∼ ai denotes matrix PA without row i and bq and

cr represent the q-th row of PB and the r-th row of PC

respectively [11].

Here, we make use of the trifocal tensor’s ability to map two

corresponding feature points xA ↔ xB in images A and B
into image C. Figure 1 illustrates this procedure graphically:

An arbitrary image line lB through point xB is projected into
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Fig. 2: This figure depicts the configuration of the cameras

of a stereo at two consecutive time steps, including the

geometric relations between the images.

3d space.

Given both, the line lB and the trifocal tensor T , the point

xC in image C which corresponds to the point correspon-

dence xA ↔ xB in the first two images is given by

xk
C = xk

A · lB,j · T
jk

i . (5)

The following section details the application of this relation-

ship to egomotion estimation.

III. KALMAN FILTER BASED VISUAL ODOMETRY

Estimating the camera motion at each time step is perfor-

med using two consecutive stereo image pairs. The motion

parameters are integrated temporally by means of an Iterated

Sigma Point Kalman Filter.

Figure 2 shows the configuration of a stereo rig at two

consecutive steps in time. Depicted are the image planes,

the camera coordinate frames and the orientations of the

cameras with respect to the previous right camera. While

the pose of the previous left camera is given by the known

extrinsic calibration {RC , tC} of the stereo rig, the parame-

ters {RR, tR} and {RL, tL} are defined by the egomotion

and by a combination of extrinsic camera calibration and

egomotion respectively.

A. Motion Parameterization

To parameterize motion, i.e. the spatial orientation of

the camera coordinate frame related to the world reference

frame, we use the translation vector t = (tX , tY , tZ)
T

and

the rotation matrix R (Θ,Φ,Ψ). The rotation of the camera is

parameterized in Euler angles, as a concatenation of rotations

around the three axis of the world reference frame1. In this

work we define the rotation as follows:

R (Θ,Φ,Ψ) = RZ (Θ) · RX (Φ) · RY (Ψ) (6)

The spatial motion, represented by t and R, can

be computed for every time step if the egomotion

(VX , VY , VZ , ωX , ωY , ωZ) of the stereo rig and the time

difference ∆T between two consecutive frames is known.

1The world reference frame is shifted in every time step. Hence it always
aligns with the camera coordinate frame of the previous right image.

Here Vi and ωi denote translational and rotational velocities,

respectively. Given the egomotion and the time difference

the translation and rotation are thus given by:

t = (VX · ∆T, VY · ∆T, VZ · ∆T )
T

(7)

R (ωZ · ∆T, ωX · ∆T, ωY · ∆T ) (8)

B. Trifocal Constraints for Visual Odometry

Figure 2 shows that the projection matrices of the four

cameras can be computed if the intrinsic and extrinsic

calibration of the cameras and the egomotion is known.

Without loss of generality, the camera coordinate frame of

the previous right camera is aligned with the world reference

frame PR,k = KR ·
[
I|0

]
. The remaining projection matrices

are defined as follows:

PL,k = KL ·
[
RC |tC

]
(9)

PR,k+1 = KR ·
[
RR|tR

]
(10)

PL,k+1 = KL ·
[
RL|tL

]
(11)

Here k describes the discrete time step at which the images

were captured. Using the projection matrices parameterized

as above, two trifocal tensors can be determined. One which

relates the previous image pair to the current right frame and

one which relates the previous image pair to the current left

frame. By equation (4) we have:

TR = T (KR,KL,RC , tC ,RR, tR,∆T ) (12)

TL = T (KR,KL,RC , tC ,RL, tL,∆T ) (13)

These two trifocal tensors depend on the motion of

the stereo rig and the camera calibration. Using

the trifocal tensors, a non-linear mapping of the

point correspondence xR,k ↔ xL,k into the current

images via xR,k+1 = hR (TR,xR,k,xL,k) and

xL,k+1 = hL (TL,xR,k,xL,k) is defined.

Different kinds of feature detectors and descriptors are

possible: Popular choices include Harris et. al. [10], Shi et.

al. [21] or local image descriptors like the SIFT descriptor

proposed by Lowe et. al. [17] or the SURF descriptor

proposed by Bay et. al. [5]. Those descriptors are highly

distinctive and thus allow robust matchings.

C. Bucketing

In a first step, we detect and match image features in

both stereo pairs. Afterwards a subset is chosen by means

of bucketing [29]: The image is divided into several non-

overlapping rectangles (see figure 3). In every bucket we

keep a maximal number of feature points. This benefits in

several ways. First, the smaller number of features reduces

the computational complexity of the algorithm which is an

important prerequisite for real time applications. Second, this

technique guarantees that the used image features are well

distributed along the z-axis, i.e. the roll-axis of the vehicle.

This turns out to be important for a good estimation of

the linear and angluar velocities. The distribution of image



Fig. 3: This figure depicts the results of our bucketing mechanism: The green rectangle defines the region of interest in which

features are selected, the yellow lines depict individual buckets. All crosses represent matches found in both stereo image

pairs, red crosses denote the selected, blue crosses denote the rejected features.

features along the z-axis ensures that far as well as near

features are used for the estimation process. This results in

a precise estimation of the overall egomotion of the vehicle.

Third, the used image features are uniformly distributed over

the whole image. This benefits twice: In dynamic scenes

where most of the detected features lie on independently

moving objects, our technique guarantees that not all image

features fall on independently moving objects but also on the

static background. Second, the bucketing reduces the drift

rates of the approach. In our experiments with simulated

data we observed, that high drift rates follow from biased

scene points. This effect is mitigated by the use of bucketing.

D. RANSAC based outlier rejection

The remaining feature points located on independently

moving objects are rejected using RANSAC based outlier

rejection: We randomly choose subsets of feature correspon-

dences and estimate the egomotion based on this subsets,

whereas the number of used subsets is given by

n =
log (1 − p)

log (1 − (1 − ǫ)
s
)

. (14)

Here s is the minimum number of data points needed for

estimation, p is the probability that at least one sample

contains inliers solely and ǫ defines the assumed percentage

of outliers in the data set [6]. Because of the low number

of data points (s = 3) necessary for motion estimation, the

number of samples is low even with a serious number of

outliers. After the Kalman Filter converges, we compute all

inliers using the Euclidean reprojection error. A feature is

considered as an inlier, if the Euclidean reprojection error

is lower than a certain threshold. A final estimation step

with all inliers of the best sample is performed to give the

final egomotion estimate. The proposed bucketing technique

combined with the RANSAC based outlier rejection scheme

yields a robust egomotion estimation even in the presence of

independently moving objects.

To integrate information about the dynamic behaviour of the

ego-vehicle, a Kalman Filter is used for filtering, as outlined

in the following section.

E. Kalman Filtering

The Kalman Filter is a two-step estimator making use of

a prediction step and an update step. It is used to estimate

the current state of a dynamic system, which is assumed

to be disturbed by zero-mean white noise. To estimate the

instantaneous state, disturbed measurements are used. It is

assumed, that the measurements and the state are related

via a linear transform. It is also assumed that the given

measurements are disturbed by zero-mean white noise [9].

In our case, the relations between the instantaneous state y =
(VX , VY , VZ , ωX , ωY , ωZ)

T
and the measurements, i.e. the

relations between the egomotion and the feature positions in

the current frames, given by xR,k+1 = hR (TR,xR,k,xL,k)
and xL,k+1 = hL (TL,xR,k,xL,k) respectively, are non-

linear. The discrete-time space filter equations are given by

yk+1 = f (yk) + wk (15)

zk+1 = h (yk+1) + vk+1 (16)

where yk is the state of the system at time step k,

f (.) is the non-linear system equation, h (.) is the

non-linear measurement equation described above.

zk+1 = [uR,k+1,1, . . . , vL,k+1,N ]
T

denotes the 4N -

dimensional measurement vector and wk ∼ N (0,Qk)
and vk+1 ∼ N (0,Rk+1) are the system noise and the

measurement noise respectively, which are assumed to be

uncorrelated. Here the 6 × 6 matrix Qk and the 4N × 4N
diagonal matrix Rk+1 denote the state and measurement

error covariance matrices respectively [22], and N denotes

the number of feature correspondences used for filtering.

To use Kalman Filters for non-linear problems, linearization

around the current state is often performed using a first order

Taylor-approximation. This yields the Extended Kalman

Filter (EKF). To reduce the approximation error caused

by Taylor approximation, the update step is often iterated.

In such cases h (.) is linearized around the estimated

state of the current iteration. Repeating this step yields



the well-known Iterated Extended Kalman Filter (IEKF).

In general, the iteration process is abandoned if any

predefined termination criteria is fulfilled. In our case of

highly non-linear equations the results of Extended Kalman

Filters are mostly poor. The reason for this is that the used

Taylor-approximation is only a first order approximation.

A better choice in such cases is the usage of Kalman

Filters based on the Unscented Transform (UT) [23]. Such

filters propagate mean and covariance based on sigma

points. Their estimates are mostly better than estimates of

Extended Kalman Filters because the unscented transform

incorporates information about higher order moments in the

estimation process. Examples for filters propagating mean

and covariance based on sigma points are the Unscented

Kalman Filter (UKF) [15] or the Iterated Sigma Point

Kalman Filter (ISPKF) [22]. See [23], [22] for more details

on Kalman Filtering techniques.

In the prediction step of the proposed algorithm we assume

constant velocity between consecutive time steps, so the

system equation simplifies to yk+1 = yk + wk. This

assumption is nearly fulfilled if the camera provides images

with a fairly high frame-rate. Even if this assumption is

violated (e.g. in the case of acceleration, deceleration or

turns), the update step guarantees reliable motion estimation.

In our case, the measurements are the features in the current

images. For every feature correspondence in the previous

image pair the expected coordinates in the current images

are predicted. Given the measured point correspondences,

the system equation and the measurement equation, Kalman

Filtering can be performed.

Besides the reduction in linearization error, the ISPKF

has another benefit compared to EKF based filtering. In our

experiments, the convergence of the ISPKF is approximately

60 times faster than the convergence of the IEKF, without

the need for analytical derivatives. In average, the ISPKF

converges in three iterations, whereas the IEKF needs

about 200 iteration for convergence to the same solution. A

detailed analysis of the convergence between those filtering

techniques for different termination thresholds is given in

section IV-B.

IV. EXPERIMENTAL RESULTS

For our experiments we used simulated as well as real data

sets. The real data sets were captured from our experimental

vehicle, equipped with a stereo camera rig and a high

accuracy inertial navigation system which combines inertial

measurements with a GPS-receiver and wheel speed sensors

for measuring motion, pose and orientation of the vehicle

[16]. Therefore, the INS yields a good reference for the linear

motion along the roll-axis and the yaw-rate of the car. In

the following, the INS trajectories are used as ground truth

for our experiments. As features we used Harris corners in

combination with block matching on the image derivatives,

for efficiency reasons. However, also other features can be

equally employed: With similar results, we also tried SURF

features [5]. Because of the average linear speed of 7m/s and
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Fig. 4: Comparison between different filtering techniques

(red: ground truth, blue: ISPKF, green: IEKF, black: EKF,

magenta: UKF). Best viewed in color.

ISPKF IEKF UKF EKF

positioning error 33.5 34.3 33.5 105.9

standard deviation 15.8 15.6 15.9 31.8

TABLE I: Average positioning error and standard deviation

(in meters) at the end of the sequences occuring from drift

using different simulated sequences each over a length of

2000m.

a maximum speed of 17m/s in our real world experiments,

scale invariant features benefit especially in those situations.

Compared to the average linear movements of about 1m/s

reported by Agrawal et. al. (e.g., [1]) the speed in our

experiments is significantly higher.

A. Comparison with other Filtering Techniques

Because of the non-linearities in the measurement equati-

on, we compared a variety of other filtering techniques in our

approach: We evaluated the Unscented Kalman Filter (UKF)

proposed by [15], the Extended Kalman Filter (EKF) and

the Iterated Extended Kalman Filter (IEKF). The evaluation

was perfomed on different simulated data sets. Each of

them consisting of 2000 frames and 40 scene points without

outliers, which are investigated in the next section. The

average linear motion used for this experiments was 10m/s.

The measurements were disturbed by zero-mean Gaussion

noise with a standard deviation of 0.7 pixels. As depicted in

figure 4, the results of ISPKF, IEKF and UKF are similar

to the ground truth. However, the result of the EKF is

considerably worse, because this type of filter cannot cope

well with the non-linear measurement equation. A detailed

analysis between the different filtering techniques is shown

in table I. While the ISPKF, IEKF and UKF perform similar

with respect to drift errors, we prefer using the ISPKF due

to considerably lower run-times, which are further analyzed

in section IV-B.
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Fig. 5: This figure depicts the average number of iterations

until convergence for ISPKF (blue) and IEKF (red) depen-

ding on the termination threshold.

B. Convergence Analysis

For performance analysis, we compared the number of

iterations for the ISPKF and the IEKF using different ter-

mination thresholds. Therefore, we used different simulated

data sets, each consisting of 1000 frames. In each frame

40 scene points were used for egomotion estimation. The

measurements were disturbed by Gaussian noise with no

outliers. As shown in figure 5 the number of iterations until

convergence is nearly independent for the ISPKF (threshold2:

10−1 → 3 iterations, threshold: 10−5 → 4 iterations), for

the IEKF the number of iteration increases dramatically

(threshold: 10−1 → 4 iterations, threshold: 10−5 → 464
iterations) when reducing the threshold.

C. Analysis of the Outlier Rejection Scheme

To analyze the benefits of our outlier rejection scheme,

we created different simulated data sets, each with 20%
outliers. Using these data sets we performed ISPKF based

egomotion estimation with and without outlier rejection.

The remaining parameters are the same for both filters, the

termination threshold for the iteration was set to 10−3 (in

m/s and ◦/s respectively). The results for one of the data

sets with an average linear motion of 10m/s consisting of

2000 frames is shown in figure 6. The positioning error

at the end of the trajectory with activated outlier rejection

is 24.29m, corresponding to approximately 1.3% of the

travelled distance. In contrast, the trajectory without outlier

rejection differs significantly from the ground truth.

D. Real-World Experiments

For our real-world experiments we captured different

image sequences in urban environments with high traffic.

2The threshold means, that every parameter in the estimation vector
change less than this threshold between two iterations. The unit is m/s for
the linear velocities and ◦/s for the angular velocities, respectively.
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Fig. 6: This figure depicts the trajectories of the approach

with and without the proposed outlier rejection. The trajecto-

ry with activated outlier rejection (blue) is very similar to the

ground truth (red). Without outlier rejection, the trajectory

(green) differs significantly from the ground truth.

An example image (at a resolution of 1344 × 391 pixels)

is depicted in figure 3. The stereo camera rig was moun-

ted on top of the vehicle with a base line of 0.7m. The

results for three challenging data sets with different length

and speed can be seen in figure 7. Especially the parking

sequence shown in figure 7a is challenging because of the

360◦ turn during the parking maneuver. As depicted, the

trajectory before the parking procedure is closely aligned

with the trajectory after the parking procedure. The estimated

trajectories are similar to the trajectories given by the INS.

The occuring drift which is an inherent drawback of all local

approaches is comparatively small.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented an approach for estimating

the 6DoF egomotion of a stereo camera rig based on

corresponding image features. The proposed approach is

based on the trifocal geometry between image triples.

Therefore no reconstruction of the 3d object points is

required. The algorithm neither needs a rectified stereo-

camera rig nor a time consuming preprocessing rectification

of the captured images. Merely, the intrinsic and extrinsic

calibration of the cameras need to be known.

The experimental results show, that the proposed algorithm

yields a good estimate of the egomotion in urban

environments compared to the high accuracy INS. Because

of the iteration in the update step of the Kalman Filter,

effects of non-linearity are dealt with in a principal way

during the estimation process.

The main novelty of the proposed approach is the usage of

the trifocal tensor between image triplets in combination

with a RANSAC based outlier rejection scheme. This allows

motion estimation based on measurements in the images

without recovering the 3d scene structure. Recovering of the
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Fig. 7: This figure depicts the results of the proposed egomotion estimation (blue), compared to the trajectory given by the

inertial-measurement-unit (red) for different challenging sequences in urban environments (image source: GoogleEarth).



scene structure based on the disparity is – especially for far

scene points – unreliable because depth accuracy decreases

with distance. The bucketing technique yields a good

distribution of feature points over the image, guaranteeing

that the majority of the features lie on the static background

of the scene and not on independently moving objects on

the one hand. On the other hand a uniform distribution of

the features along the roll-axis is present. This results in a

precise estimation of the linear and angular velocities. The

RANSAC based outlier rejection scheme sorts out remaining

features on independently moving objects prior to the final

estimation process. Taken together, this yields an accurate

egomotion estimation, even in dynamic environments.

To improve the proposed approach we are working on

a better model of the system, which accounts for the

dynamic behaviour of the vehicle more precisely than the

constant velocity assumption in the presented approach. We

also try to estimate the mechanical parameters involved

in the dynamic behaviour of the vehicle jointly with the

motion parameters in our future research.
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