
Efficient Facade Segmentation using Auto-Context

Varun Jampani∗

MPI for Intelligent Systems
Tübingen, Germany

varun.jampani@tuebingen.mpg.de

Raghudeep Gadde∗

Université Paris-Est, LIGM
ENPC, ECP, Paris, France
gadder@imagine.enpc.fr

Peter V. Gehler
MPI for Intelligent Systems

Tübingen, Germany
pgehler@tuebingen.mpg.de

Abstract

In this paper we propose a system for the problem of fa-
cade segmentation. Building facades are highly structured
images and consequently most methods that have been pro-
posed for this problem, aim to make use of this strong prior
information. We are describing a system that is almost do-
main independent and consists of standard segmentation
methods. A sequence of boosted decision trees is stacked
using auto-context features and learned using the stacked
generalization technique. We find that this, albeit stan-
dard, technique performs better, or equals, all previous pub-
lished empirical results on all available facade benchmark
datasets. The proposed method is simple to implement, easy
to extend, and very efficient at test time inference.

1. Introduction

In this paper we consider the problem of segmenting the
pixels in images of building facades into different seman-
tic classes. An example image from a common benchmark
dataset for this problem is shown in Fig. 1 along with its
provided manual annotation. This problem is a core com-
ponent of several real world applications, including urban
modeling, or automatic generation of virtual cities with spe-
cific building styles. Images of buildings exhibit a strong
structural organization due to architectural design choices
and construction constraints. For example, windows are
usually not placed randomly, but on the same height, usu-
ally with a vertical ordering; a door can only be found on
street-level, etc.

This problem is also an interesting test-bed for general
purpose segmentation methods that allow including such
strong prior knowledge. Therefore it is not surprising that
most recent approaches to this problem focus on ways to
include structural information in a principled way. Some
examples are Conditional Random Field (CRF) models that
use higher order potential functions [23, 21]. Another

∗The first two authors contribute equally to this work.

route is using grammar-based models that include genera-
tive rules [14, 19, 12] and try to infer the production rules
from image evidence.

In contrast to these approaches, we largely ignore do-
main specific knowledge and describe a generic segmenta-
tion method that is easy to implement, has fast test time in-
ference, and is easily adaptable to new datasets. The system
is a sequence of boosted decision tree classifiers, that are
stacked using auto-context [20] features and learned using
stacked generalization [22]. The entire pipeline consists of
established components and we consider it to be a baseline
method for this task. Surprisingly, we find that this method
outperforms or equals all published approaches on all avail-
able diverse benchmark datasets. Therefore, this approach
defines a new state-of-the-art method in terms of empirical
performance. Experiments suggest that more domain spe-
cific models would benefit from better unary predictions.
Moreover our findings also suggest that previous methods
need to be carefully re-evaluated in terms of a relative im-
provement compared to a method like the proposed one.

A pixel-wise facade classification might not be a desired
output for some applications. For instance, high level struc-
tural information is needed to synthesize new facades in a
virtual city. To show the usefulness of pixel-level segmen-
tation result in obtaining accurate high-level information,
we used our pixel-level predictions in a procedural model-
ing system [19] that aims to recover production rules of the
facade image. This output is of interest in different applica-
tions and we show that an improved pixel-wise prediction
directly translates into a better facade parsing result.

2. Related Work
Approaches to facade segmentation can be broadly clas-

sified into two categories: bottom-up methods [11, 21, 23, 1]
that use pixel level classifiers in combination with CRF
models and top-down methods [19, 14, 12] that use shape
grammars. The shape grammar methods seek to parse a fa-
cade segmentation into a set of production rules and element
attributes. The central idea is to represent the facade using a
parse tree and compute the best possible derivation of a spe-



Input Image

Detection

GT

Stage-1

Stage-1 Result

Image
Features

Stage-2

Stage-2 Result

Context
Features

Stage-3

Stage-3 Result

Context
Features

Figure 1. Schematic of different components in our facade segmentation pipeline with a sample facade from ECP dataset [18].

cific grammar towards optimal segmentation of the image.
The high structural organization of facades due to architec-
tural design choices make such a generative approach a nat-
ural model candidate. However they are not pixel accurate
and not easily amendable to efficient inference which often
leads to inefficient and sub-optimal segmentation results.
As a consequence, the state-of-the-art methods in terms of
pixel accuracy are dominated by the bottom-up methods.

In [11], a three-layered system is proposed. A first layer
use a recursive neural network to obtain pixel label prob-
abilities which are fed into a grid CRF model in a second
layer along with object detections. The third layer enforces
weak architectural principles in facades as post-processing.
This setup combines high-level and low-level information
into a single prediction. The runtime of this system is men-
tioned in [1] to be about 2 minutes for an image of size 500
by 300. The works [23, 21] incorporate architectural knowl-
edge in a single CRF framework using higher order poten-
tial functions. The method of [23] proposes a hierarchical
CRF framework to encode inter-class location information
in facades. The work of [21] uses long range pairwise and
ternary potentials to encode the repetitive nature of various
class regions. Both methods require specific inference tech-
niques that result in non-negligible runtimes. The approach
of [1] is to use a sequence of dynamic programming runs
that search for optimal placement of window and balcony
rows, door location and others. Every single step is very fast
and the overall system is mostly global optimal. The down-
side is that the sequence and type of classifications needs to
match facade architecture type.

All the discussed methods build on top of pixel label
probabilities which are obtained using pixel classifiers. It is
only after those have been obtained, that architectural con-
straints are taken into account. This is different to the sys-
tem we describe in this paper, where low-level pixel clas-
sifications are obtained directly from image, detection, and
auto-context features.

The closest to our work are [7] and [8] which also pro-
posed auto-context based methods for facade segmentation.
The work of [7] incorporated auto-context features in ran-
dom decision forests where the classification results from
top-layers of trees are used to compute auto-context fea-
tures and are then used in training the lower layers of the
trees in forest. More recently, [8] proposed to use the lo-
cal Taylor coefficients computed from the posterior at dif-
ferent scales as auto-context. Although conceptually simi-
lar, the proposed method uses different low-level features,
auto-context features and learning techniques. Experimen-
tal comparisons suggest a superior performance of the pro-
posed system.

3. Auto-Context Segmentation
The overall architecture that we use combines standard

segmentation methods. Boosted decision trees are stacked
with the use of auto-context [20] features from the second
layer onward. Learning is implemented using stacked gen-
eralization [22]. We will describe the ingredients in the fol-
lowing, starting with the segmentation algorithm (Sec. 3.1),
the feature representation (Sec. 3.2), auto-context features
(Sec. 3.3), and the training architecture (Sec. 3.4).

Given an image I , the task of segmentation is to clas-
sify every pixel i into one of C classes ci ∈ {1, . . . , C}.
For training we are given a set of N training examples
(Ij , Y j), j = 1, . . . , N of images along with a manual an-
notation Y j . We will comment on the loss function in the
experimental section and for now treat the problem as one
that decomposes over the set of pixels. Two different feature
sets are distinguished, image features fi ∈ RDf that are de-
rived from the RGB observations and auto-context features
ai ∈ RDa based on prediction results from previous stages.

3.1. Architecture

Our system consists of an iterative sequence of classi-
fiers as suggested in [20]. A schematic overview of the



pipeline is depicted in Fig. 1. At every stage t, the classi-
fier has access to the image and to predictions of all earlier
stages. Formally, at stage t > 1 a classifier F t maps image
and auto-context features to a probability distribution of the
pixel class assignments

F t
(
fi(I), ai(P

t−1)
)
7→ P t(ci|I),∀i. (1)

For pixel classifier F t, we use boosted decision trees that
store conditional distributions at their leaf nodes, in general
the output of F t need not be a distribution. The first stage
t = 1 depends only on the features F 1(fi(I)) derived di-
rectly from the image.

This architecture is a conceptually easy but efficient way
to use contextual information in pixel level classification.
Classifiers of later stages can correct errors that earlier
stages made. An example sequence of predictions can be
seen in Fig. 1. For example, an auto-context feature can en-
code the density of a predicted class around a pixel. The
classifier can learn that certain classes only appear in clus-
ters which then allows to remove spurious predictions. This
has a similar smoothing effect as some pairwise CRF mod-
els have but with the benefit of a much faster inference.

For training and testing we used the DARWIN tool-
box [9]. The maximum tree-depth of each classifier is set to
2 and we used a maximum of 200 boosting rounds. The
runtime of the system is summarized in Table 1. These
numbers are computed on an Intel Core(TM) i7-4770 CPU
@ 3.40 GHz for a common image from the ECP dataset
(about 500×400 pixels). The runtime for the features is the
sequential computation for all features.

3.2. Image Features

As image features, we computed 17 TextonBoost filter
responses [17], location information, RGB color informa-
tion, dense Histogram of Oriented Gradients [2], Local Bi-
nary Pattern features, and all filter averages over image rows
and columns at each pixel. These again are computed using
the DARWIN [9] toolbox.

In addition to the above generic segmentation features
we include detection scores for some specific objects. Fol-
lowing [11], we use detectors for windows and doors.
Whereas [11] fused the detection scores into the output of
the pixel classifiers, we turned the detection scores into im-
age features at every single pixel. We use the integral chan-
nel features detector from [4] for which a toolbox is avail-
able [3]. For a given image, the detector outputs a number of
bounding boxes along with a corresponding score for each
bounding box. We sum up the scores to get a single detec-
tion score at each pixel. Object detection parameters are au-
tomatically estimated using the training data to get good re-
call. Fig. 2 shows an example window detection output for
a sample facade image. The detection feature is of course
a problem dependent one and based on the prior knowledge

(a) Facade (b) Detection

Figure 2. A facade and the corresponding window detection out-
put. Bright and dark regions correspond to high and low detection
scores respectively.

about the special classes door and windows. However it is
still a generic feature in the sense that the prior information
is very weak and a generic detection system has been used
to obtain it. Moreover, door and window classes are com-
mon to any architecture of facades. 761 low-level image
features coupled with 2 door and window detection features
make a total of 763 feature values at each pixel.

3.3. Auto-context Features

In addition to the image features, the classifiers from
stage t > 1 can condition on statistics computed from pre-
vious predictions. We include the auto-context features ai
that are being computed from predictions of the previous
classifier P t−1(·|I) only. For every pixel i we compute the
following auto-context features of length 14C + 1.

Class probability The probability P t−1(ci|I). (length C).

Entropy The entropy of P t−1(·|I). This feature quanti-
fies the ambiguity of the t − 1 stage prediction (length 1) .

Row and column scores We compute the percentage of
predicted classes in the row and column of pixel i. Along
with this percentage we compute the average score of all
pixels in the same row and column as i (length 4C) .

Distance to the nearest class pixel Both Euclidean and
Manhattan distances to the nearest class pixel are computed
as features (length 2C) .

Class color model For every class c we fit, with maxi-
mum likelihood, a Gaussian distribution to the RGB values
of all those pixels that are being predicted to be class c. To
be more robust, we fit the distribution only to those pix-
els with probabilities greater than the 3rd quartile. For ev-
ery pixel we then calculate the log-likelihood for all classes
(length C) .

Bounding box features For every class, we fit a rectan-
gular bounding box to every connected component of MAP



predictions. For every pixel we compute a C vector with
the c’th component being a 1 or 0 depending on whether it
lies inside or outside of a box for class c. A variant of this
feature is to compute the average class probability inside
the box. This feature aims to improve the segmentation of
rectangular objects such as doors and windows (length 2C) .

Neighborhood statistics For every pixel, the average
class probability is computed in a 10 × 5 region above and
below the pixel; and also in a 5× 10 region left and right to
that pixel (length 4C) .

3.4. Stacked Generalization

We train the sequence of classifiers using the method of
stacked generalization [22]. The training data is split in four
folds and four different models are trained using three folds,
with one fold held out. The four models are used to obtain
prediction on the held out fold, this results in a set of cross-
validation predictions. It is from these predictions that the
auto-context features for training are computed. The next
stage classifier is trained subsequently, in the same man-
ner. For every stage, one classifier is trained using the en-
tire training data (all four folds) and used during test time
inference.

During training, the auto-context features are thus com-
puted using different classifiers, different also from the clas-
sifier that is being used at test time. The reason for this pro-
cedure is to obtain features that are not computed on train-
ing predictions and thus do not overfit to the data. This
procedure is a standard strategy and found to be stable and
well performing in many scenarios. In the experiments we
use a total of three classification stages and, experiments
indicated that the performance of a fourth stage levels out.

4. Experiments
We evaluate the auto-context pipeline on all five bench-

mark datasets that are available for the problem of fa-
cade segmentation. For all datasets except LabelMeFa-
cade dataset, we report five fold cross-validation results,
the standard protocol used in the literature. One fold cross-
validation is done for LabelMeFacade dataset as the training
and testing data are pre-specified for this dataset. We com-
pare against all recent best performing methods.

As a performance measure we use the overall pixel-wise
classification accuracy and the accuracy averaged over the
classes. These are the two standard results that are reported
in the literature. In addition we also report the intersection
over union (IoU) score, popularized by the VOC segmen-
tation challenges [5]. The IoU score is a higher-order loss
function and Bayes optimal prediction requires dedicated
inference techniques. For simplicity, we report MAP pre-
dictions for all pixels and evaluate all three measures on
this prediction. The three measures in terms of false posi-

tives (FP), true positives (TP), and false negatives (FN) are
defined as follows.

• Pixel Accuracy: “TP / (TP + FN)” computed over en-
tire image pixels of all classes.

• Average Class Accuracy: Pixel accuracy computed for
all classes separately and then averaged.

• Intersection Over Union Score (IoU): “TP / (TP + FN
+ FP)” computed on every class and then averaged.

The performance differences are tested for statistical sig-
nificance. We used a paired t-test with one tail and p <
0.01.

4.1. Datasets

ECP Dataset The ECP dataset [18] consists of 104 recti-
fied facade images of Hausmannian architectural buildings
from Paris. For five-fold cross validation, we divided the
training data into 4 sets of 20 images and 1 set of 24 im-
ages. There are seven semantic classes in this dataset.

Graz Dataset This dataset [14] has 50 facade images
of various architectures (Classicims, Biedermeier, Histori-
cism, Art Nouveau) from buildings in Graz. There are only
four semantic classes, and the data is divided into 5 equal
sets for cross-validation.

eTRIMS Dataset The eTRIMS dataset [10] consists of
60 non-rectified images. Facades in this dataset are more
irregular and follow only weak architectural principles.
Again, we split the data into 5 equal sets for cross-
validation.

CMP Dataset This dataset, proposed in [21], has 378 rec-
tified facades of diverse styles and 12 semantic classes in its
base set. We divided the data into 4 sets of 75 images each
and one set of 78 images for cross-validation.

LabelMeFacade Dataset Introduced in [6], this dataset
has 100 training and 845 testing facade images taken from
LabelMe segmentation dataset [16]. Facades in this dataset
are highly irregular with lot of diversity across images.

4.2. Results

The empirical results on the ECP dataset are reported
in Table 2, the results on the remaining four datasets are
summarized in Table 3.

The first observation we make is that the use of a
stacked auto-context pipeline improves the results on all the
datasets. On the ECP dataset, the improvement is 1.95% in
terms of overall pixel-accuracy for a three-stage classifier
(ST3) compared to single stage classifier (ST1). The order-
ing in terms of statistically significant performance is on the
ECP, CMP and LabelMeFacade datasets ST3>ST2>ST1
and on eTrims and Graz ST3=ST2>ST1. The auto-context



Method Features AC-
Features

ST1 ST2 ST3 PW [11] [1]

Time (s) 3.0 0.6 +0.04 +0.64 +0.64 +24 110 2.8

Table 1. Average runtime for various methods. ‘Features’ correspond to low-level and object detection image features (computed once).
‘AC’ corresponds to Auto-Context features. The classifier runs at 0.04 seconds, every stage needs to additionally compute AC features.
A Potts model using alpha expansion takes on average 24s. Inference times (excluding unary computation) of existing methods are also
shown for comparison.

Class Auto Context AC + Potts Model Grammar Parsing

[11] [1]-1 [1]-2 ST1 ST2 ST3 PW1 PW2 PW3 [19] [12] ST3+[19]

Door 60 79 82 76.2 79.2 80.4 77.9 79.9 81.3 47 50 64.2

Shop 86 94 96 87.6 90.4 91.6 90.5 92.1 93.2 88 81 90.1

Balcony 71 91 92 85.8 89.4 89.4 86.4 89.3 89.3 58 49 71.4

Window 69 85 87 77.0 80.7 81.8 77.1 81.0 82.3 62 66 75.6

Wall 93 90 88 91.9 92.3 92.4 93.0 93.0 92.9 82 80 92.5
Sky 97 97 96 97.3 97.9 98.0 97.8 98.1 98.2 95 91 96.1

Roof 73 90 93 86.5 88.1 88.1 88.4 89.3 89.2 66 71 77.2

Average 78.4 89.4 90.6 86.04 88.28 88.79 87.31 88.94 89.49 71.1 69.7 81.0

Overall 85.06 90.82 90.34 88.86 90.49 90.81 90.02 91.12 91.42 74.71 74.82 85.2

IoU - - - 75.25 78.62 79.32 77.57 79.88 80.54 - - 72.4

Table 2. Segmentation results of various methods on ECP dataset. ST1, ST2, and ST3 correspond to the classification stages in the auto-
context method. PW1, PW2, and PW3 refer to a Potts model over the classification unaries. Published results are shown for comparisons.
The parsing result of the reinforcement learning method [19] when using the output ST3 result are reported on the right.

features are frequently selected from the boosted decision
trees. For the ECP dataset, about 30% of the features in
stage 2 and 3 are auto-context features (CMP 46%, eTrims
31%, and Graz 11%). We didn’t notice any significant dif-
ferences or trends regarding the type of auto-context fea-
tures picked by the boosted decision trees for different
datasets.

The next observation on ECP dataset is that the per-
formance of ST3 with 90.81% is on par with the reported
90.82% from the current best performing method [1]. The
results of the auto-context classifier are significantly higher
on the other four datasets when compared to the methods
of [14, 1, 11, 21, 7, 13, 8]. On all datasets, but ECP, even
the first stage classifier produces better predictions than the
previous approaches. The methods of [14, 1, 11, 21] all
include domain knowledge in their architecture. For exam-
ple, the system of [1] is a sequence of dynamic programs
that is used to include specific domain knowledge, such as
that balconies are below windows, only one door exists, or
elements like windows are in fact rectangular segments. On
this dataset, the authors of [1] observe an about 4% im-
provement over their unary classifiers accuracy∗, we con-
jecture it also may improve the predictions of ST3.

The methods of [14, 1, 11, 21, 7, 13], use different
unary predictions and therefore may profit from the out-
put of the auto-context classifier. Unfortunately, the respec-

∗personal communication

tive unary-only results are not reported, so at this point it
is not possible to estimate the relative improvement gains
of the methods. The fact that a conceptually simple auto-
context pipeline outperforms, or equals, all methods on all
published datasets suggests that a more careful evaluation
of the relative improvements of [14, 1, 11, 21] is required.

In addition to the pixel-wise predictions of the auto-
context classifiers we evaluated a CRF with an 8-connected
neighbourhood and pairwise Potts potentials. The single
parameter of the Potts model (weight for all classes set to
equal) was optimized to yield the highest accuracy on the
training set (thus possibly at the expense of losing a bit
of performance compared to a cross-validation estimate).
Inference is done using alpha expansion implemented in
DARWIN [9]. The results of the Potts-CRF on top of the
unary predictions of different staged auto-context classi-
fiers are referred to as PW1, PW2, and PW3 in Table 2.
For other datasets, only results for PW3 are shown in Ta-
ble 3 with more results in supplementary†. First, we find
that the Potts model is improving over the results from
the auto-context stages ST1, ST2, and ST3 (p < 0.01).
This suggests that some local statistics are not captured in
the auto-context features; more local features may improve
the auto-context classifiers. Second, the CRF-Potts model
achieves higher accuracies than the method of [1], making
it the (although only marginally) highest published result on

†http://fs.vjresearch.com



(a) Facade (b) GT (c) ST1 (d) ST2 (e) ST3 (f) PW3 (g) Parse

Figure 3. (a) Sample facade image from ECP dataset; (b) Ground truth segmentation; and (c,d,e) Result of various classification stages of
our auto-context method. Observe that the method removes isolated predictions and recovers the second lowest line of windows. (f) Potts
model on top of ST3 result, and (g) parsed result obtained by applying reinforcement learning [19] using ST3 result.

(a) eTRIMS Dataset

Class Auto Context

[11] [1] [8] ST1 ST2 ST3 PW3

Building 91 91 84 90.3 90.5 90.9 92.5
Car 69 70 51 63.3 74.8 72.4 76.6
Door 18 18 73 62.7 62.3 63.6 65.3

Pavement 33 33 55 43.0 46.5 47.1 48.8
Road 55 57 81 78.2 82.3 80.3 82.1
Sky 93 97 99 97.6 98.5 98.6 98.9
Vegetation 89 90 92 91.1 92.1 92.3 92.9
Window 74 71 78 65.9 67.1 68.4 68.2

Average 65.3 65.9 66.4 74.01 76.78 76.7 78.14
Overall 83.16 83.84 83.40 84.68 85.95 86.12 87.29
IoU - - - 58.7 61.26 61.48 63.54

(b) LabelMeFacade Dataset

Class Auto Context

[7] [13] ST1 ST2 ST3 PW3

Building - - 87.7 88.1 88.2 92.1
Car - - 47.1 53.6 54.8 58.2
Door - - 6.52 6.03 5.12 1.71

Pavement - - 24 25.3 24.6 23.3

Road - - 80.3 82.1 84.5 87.6
Sky - - 86.2 87.2 87.4 88.9
Vegetation - - 53.3 57.5 57.6 57.9
Window - - 20.3 22.6 25.4 19.5

Various - - 19.9 20.6 21.0 12.1

Average 56.61 - 47.26 49.22 49.84 49.04

Overall 67.33 71.28 71.52 72.9 73.46 75.23
IoU - 35.96 37.01 38.69 39.36 39.57

(c) CMP Dataset

Class Auto Context

[21] ST1 ST2 ST3 PW3

Background 58 67.1 71.8 72.6 73.1
Facade 73 74.6 75.3 75.2 79.3
Window 61 71.6 76.1 77.0 78.1
Door 54 37.9 45.5 47.0 48.7
Cornice 41 39.1 47.5 49.6 50.1
Sill 27 21.1 32.8 36.2 34.6
Balcony 46 31.6 44.1 46.7 48.1
Blind 48 22.7 35.8 40.1 39.9
Deco 24 10.4 13 13.8 11.4
Molding 54 63.2 65.4 66.5 67.2
Pillar 25 5.71 11.2 13.6 9.78
Shop 59 40.9 45.6 45.6 46.8

Average 47.5 40.50 47.00 48.65 48.92
Overall 60.3 61.83 65.47 66.24 68.08
IoU - 29.26 34.46 35.86 37.47

(d) Graz Dataset

Class Auto Context

ST1 ST2 ST3 PW3 [14]

Door 57.3 62.4 62.7 63 41

Window 78.2 81.2 81.5 80.9 60

Wall 94.9 94.7 94.9 95.8 84

Sky 87.4 91.2 90.5 90.6 91

Average 79.47 82.40 82.42 82.56 69

Overall 90.18 91.02 91.16 91.68 78

IoU 71.25 73.31 73.25 74.39 58

Table 3. Segmentation results on the eTRIMS, LabelMeFacade, CMP and Graz datasets. ST1, ST2 and ST3 correspond to various classi-
fication stages in our method. PW3 corresponds to Potts model on top of ST3 result. The method of [14] parses the image into a lattice
representation and is not trying to maximize pixel accuracy results.

the ECP dataset. In practice, this performance gain has to
be traded-off against the inference time of alpha-expansion
which is on average an additional 24 seconds for an image
from the ECP dataset. Some example visual results (ST3)

are shown in Fig. 4 for various dataset images (more results
in the supplementary material).



Results on some ECP dataset images

Results on some rectified eTRIMS dataset images

Results on some Graz dataset images

Results on some CMP dataset images

Results on some LabelMeFacade dataset images

Figure 4. Qualitative results on various datasets (more results in the supplementary material)

5. Procedural Modeling

A pixel-wise classification of a building facade might not
be the desired output for some applications. This motivated
shape grammar methods [14, 15, 19, 12] that parse the fa-
cade into a different representation than pixel-wise labeling.
The aim of these top-down approaches is to infer the archi-
tectural (structural) information in facades by fitting a set of
grammar rules to a pixel classifier output. Such structural
information can be used to generate new facade instances
for virtual cities, retrieving structurally similar facades etc.
We apply the method of [19], and compare against their re-
sult that is obtained using a random forest classifier that uses
color information. All other settings and the grammar are
the same. For space reasons we refer to [19] for more de-
tails about the approach. The results are shown in the last

three columns of Table 2. These numbers are obtained by
back-projecting the parsed representation into a pixel-wise
prediction. We observe that better pixel predictions directly
translates to better parsing results. A substantial improve-
ment of 10.49% is achieved, closing the gap to pixel pre-
diction methods. This shows the importance of good pixel
predictions even for models that only make use of them as
an intermediate step.

6. Discussion and Conclusion

The segmentation method that we described in this work
is a collection of established components. It is easy to im-
plement, fast at test-time, and outperforms all previous ap-
proaches on all published facade segmentation datasets. It
is the fastest method amongst all those that we compared



against. The runtime is dominated by feature computation,
which is amendable to massive speed improvements in case
a high performing implementation is required. We observe
on all datasets that adding stacked classifiers using auto-
context features improves the performance. For the ECP
dataset, a Potts-CRF improves about another 0.6% but this
comes at the expense of a severe increase in runtime.

The auto-context classifier raises the bar when it comes
to absolute performance. It largely ignores domain knowl-
edge, but still the performance is equal or higher than all
methods that include prior information in some form, for
example the number of doors, relationship of balconies and
windows, etc. We believe that it is important to evaluate
methods in terms of a relative improvement over strong
unary baselines. The system described in this paper can be
considered as such a strong baseline. In order to facilitate
a fair comparison of previous and future work, we release
the code and predictions that have been used to obtain the
reported results ‡.

Acknowledgements This work was partly carried out in
IMAGINE, a joint research project between ENPC and CSTB, and
partly supported by ANR-13-CORD-0003 and ECP.

References
[1] A. Cohen, A. G. Schwing, and M. Pollefeys. Efficient struc-

tured parsing of facades using dynamic programming. In
Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on, pages 3206–3213. IEEE, 2014.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recog-
nition (CVPR), IEEE Conference on, volume 1, pages 886–
893, 2005.

[3] P. Dollár. Piotr’s Computer Vision Matlab Toolbox
(PMT). http://vision.ucsd.edu/˜pdollar/
toolbox/doc/index.html.

[4] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel
features. In British Machine Vision Conference, volume 2,
page 5, 2009.

[5] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International Journal of Computer vision, 88(2):303–
338, 2010.

[6] B. Frohlich, E. Rodner, and J. Denzler. A fast approach for
pixelwise labeling of facade images. In Pattern Recogni-
tion (ICPR), 20th International Conference on, pages 3029–
3032. IEEE, 2010.

[7] B. Fröhlich, E. Rodner, and J. Denzler. Semantic segmenta-
tion with millions of features: Integrating multiple cues in a
combined random forest approach. In Asian Conference on
Computer Vision (ACCV), pages 218–231. Springer, 2012.

[8] C. Gatta and F. Ciompi. Stacked sequential scale-space tay-
lor context. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2014.

‡http://fs.vjresearch.com

[9] S. Gould. DARWIN: A framework for machine learning and
computer vision research and development. Journal of Ma-
chine Learning Research, 13:3533–3537, Dec 2012.

[10] F. Korč and W. Förstner. eTRIMS Image Database for inter-
preting images of man-made scenes. Technical Report TR-
IGG-P-2009-01, April 2009.

[11] A. Martinovic, M. Mathias, J. Weissenberg, and L. Van Gool.
A three-layered approach to facade parsing. In European
Conference on Computer Vision (ECCV), pages 416–429.
Springer, 2012.

[12] A. Martinovic and L. Van Gool. Bayesian grammar learning
for inverse procedural modeling. In Computer Vision and
Pattern Recognition (CVPR), IEEE Conference on, pages
201–208, 2013.

[13] S. Nowozin. Optimal decisions from probabilistic models:
the intersection-over-union case. In Computer Vision and
Pattern Recognition (CVPR), IEEE Conference on, 2014.

[14] H. Riemenschneider, U. Krispel, W. Thaller, M. Donoser,
S. Havemann, D. Fellner, and H. Bischof. Irregular lattices
for complex shape grammar facade parsing. In Computer
Vision and Pattern Recognition (CVPR), IEEE Conference
on, pages 1640–1647, 2012.

[15] N. Ripperda and C. Brenner. Reconstruction of façade struc-
tures using a formal grammar and RjMCMC. In DAGM,
2006.

[16] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man. Labelme: a database and web-based tool for image
annotation. International Journal of Computer vision, 77(1-
3):157–173, 2008.

[17] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-
boost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In Euro-
pean Conference on Computer Vision (ECCV), pages 1–15.
Springer, 2006.

[18] O. Teboul. Ecole centrale paris facades database, 2010.
[19] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and

N. Paragios. Shape grammar parsing via reinforcement
learning. In Computer Vision and Pattern Recognition
(CVPR), IEEE Conference on, pages 2273–2280. IEEE,
2011.

[20] Z. Tu. Auto-context and its application to high-level vision
tasks. In Computer Vision and Pattern Recognition (CVPR),
IEEE Conference on, pages 1–8, 2008.

[21] R. Tyleček and R. Šára. Spatial pattern templates for recog-
nition of objects with regular structure. In Proc. German
Conference on Pattern Recognition, Saarbrücken, Germany,
2013.

[22] D. H. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

[23] M. Y. Yang and W. Forstner. A hierarchical conditional ran-
dom field model for labeling and classifying images of man-
made scenes. In Computer Vision Workshops (ICCV Work-
shops), IEEE International Conference on, pages 196–203,
2011.


