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Abstract

Both image segmentation and dense 3D modeling from
images represent an intrinsically ill-posed problem. Strong
regularizers are therefore required to constrain the solutions
from being ’too noisy’. Unfortunately, these priors generally
yield overly smooth reconstructions and/or segmentations
in certain regions whereas they fail in other areas to con-
strain the solution sufficiently. In this paper we argue that
image segmentation and dense 3D reconstruction contribute
valuable information to each other’s task. As a consequence,
we propose a rigorous mathematical framework to formu-
late and solve a joint segmentation and dense reconstruction
problem. Image segmentations provide geometric cues about
which surface orientations are more likely to appear at a
certain location in space whereas a dense 3D reconstruction
yields a suitable regularization for the segmentation problem
by lifting the labeling from 2D images to 3D space. We show
how appearance-based cues and 3D surface orientation pri-
ors can be learned from training data and subsequently used
for class-specific regularization. Experimental results on
several real data sets highlight the advantages of our joint
formulation.

1. Introduction

Even though remarkable progress has been made in recent
years, both image segmentation and dense 3D modeling from
images remain intrinsically ill-posed problems. The standard
approach to address this ill-posedness is to regularize the
solutions by introducing a respective prior. Traditionally, the
priors enforced in image segmentation approaches are stated
entirely in the 2D image domain (e.g. a contrast-sensitive
spatial smoothness assumption), whereas priors employed
for image-based reconstruction typically yield piece-wise
smooth surfaces in 3D as their solutions. In this paper we
demonstrate that joint image segmentation and dense 3D
reconstruction is beneficial for both tasks. While the ad-
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Figure 1: Top: Example of input image, standard image
classification result, depthmap. Bottom: Our proposed joint
optimization combines class segmentation and geometry
resulting in an accurately labeled 3D reconstruction

vantages of a joint formulation for segmentation and 3D
reconstruction have already been observed and utilized in
the literature, our main contribution is the introduction of
a rigorous mathematical framework to formulate and solve
this joint optimization task. We extend volumetric scene
reconstruction methods, which segment a volume of interest
into occupied and free-space regions, to a multi-label volu-
metric segmentation framework assigning object classes or
a free-space label to voxels. On the one hand, such a joint
approach is highly beneficial since the associated appear-
ance (and therefore a likely semantic category) of surface
elements can influence the spatial smoothness prior. Thus,
a class-specific regularizer guided by image appearances
can adaptively enforce spatial smoothness and preferred
orientations of 3D surfaces. On the other hand, densely re-
constructed models induce image segmentations which are
guaranteed to correspond only to geometrically meaningful
objects in 3D. Hence, the segmentation results are trivially
consistent across multiple images.

In a nutshell, we propose to learn appearance likelihoods
and class-specific geometry priors for surface orientations
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from training data in an initial step. These data-driven priors
can then be used to define unary and pairwise potentials in
a volumetric segmentation framework, complementary to
the measured evidence acquired from depth maps. While
optimizing over the label assignment in this volume, the
image-based appearance likelihoods, depth maps from com-
putational stereo, and geometric priors interact with each
other yielding an improved dense reconstruction and label-
ing. The remainder of the paper explains each step in detail,
and our mathematical framework is verified on several chal-
lenging real-world data sets.

2. Related Work
There is a vast literature on dense 3D modeling from

images. Here we sketch only a small subset of related lit-
erature, and refer e.g. to the Middlebury MVS evaluation
page [20] for a broader survey. Given a collection of depth
images (or equivalently densely sampled oriented 3D points)
the methods proposed in [13, 27, 23] essentially utilize the
surface area as regularization prior, and obtain the final sur-
face representation indirectly via volumetric optimization.
One main difference between [13] and [27, 23] is the utiliza-
tion of a combinatorial graph-cut formulation in the former,
whereas [27, 23] employ a continuously inspired numerical
scheme. The regularization prior in these works is isotropic,
i.e. independent of the surface normal (up to the impact
of the underlying discretization), corresponding to a total
variation (TV) regularizer in the volumetric representation.
The work of [10] utilizes an anisotropic TV prior for 3D
modeling in order to enforce the consistency of the surface
normals with a given normal field, thus better preserving
high frequency details in the final reconstruction. All of the
above mentioned work on volumetric 3D modeling from
images returns solely a binary decision on the occupancy
state of a voxel. Hence, these methods are unaware of typical
class-specific geometry, such as the normals of the ground
plane pointing upwards. These methods are therefore unable
to adjust the utilized smoothness prior in an object- or class-
specific way. This observation led to the initial motivation
for the present work. More specifically, it is notoriously dif-
ficult to faithfully reconstruct weakly or indirectly observed
parts of the scene such as the ground, which is usually cap-
tured in images at very slanted angles (at least in terrestrial
image data). [9] proposes to extend an adaptive volumetric
method for surface reconstruction in order not to miss impor-
tant parts of the scene in the final geometry. The assumption
in their method is that surfaces with weak evidence are likely
to be real surfaces if adjacent to strongly observed freespace.
A key property of our work is that weakly supported scene
geometry can be assisted by a class-specific smoothness
prior.

If only a single image is considered and direct depth cues
from multiple images are not available, assigning object cat-

egories to pixels yields crucial information about the 3D
scene layout [8, 19], e.g. by exploiting the fact that building
facades are usually vertical, and ground is typically horizon-
tal. These relations are generally not manually encoded, but
extracted from training data. Such known geometric rela-
tions between object categories can also be helpful for 2D
image segmentation, e.g. by assuming a particular layout for
indoor images [15], a tiered layout [6] or class-specific 2D
smoothness priors [22]. Utilizing appearance-based pixel
categories and stereo cues in a joint framework was pro-
posed in [11] in order to improve the quality of obtained
depth maps and semantic image segmentations. In our work,
we also aim on joint estimation of 3D scene geometry and
assignment of semantic categories, but use a completely dif-
ferent problem representation—which is intrinsically using
multiple images—and solution method. [18, 2] also present
joint segmentation and 3D reconstruction methods, but the
determined segments correspond to individual objects (in
terms of an underlying smooth geometry) rather than to se-
mantic categories. Furthermore, a method [1] using semantic
information for dense object reconstruction in form of shape
priors has been developed concurrently to our work.

3. Joint 3D Reconstruction and Classification
In this section we describe the underlying energy for-

mulation for our proposed joint surface reconstruction and
classification framework and its motivation. Similar to pre-
vious works on global surface reconstruction we lift the
problem from an explicit surface representation to an im-
plicit volumetric one. The increased memory consumption
is compensated by the advantages of allowing arbitrary but
closed and oriented topology for the resulting surface.

3.1. Continuous Formulation

We cast the ultimate goal of semantically guided shape
reconstruction as a volumetric labeling problem, where one
out of L+ 1 labels is assigned to each location z ∈ Ω in a
continuous volumetric domain Ω ⊂ R3. In the following
we will use indices i and j for labels. Allowed labels are
“free/empty space” (with numeric value 0) and “occupied
space” with an associated semantic category (values from
{1, . . . , L}). The label assignments will be encoded with
L + 1 indicator functions xi : Ω → [0, 1], i ∈ {0, . . . , L}:
xi(z) = 1 iff label i is assigned at z ∈ Ω. Note that in
the following, the dependence of all quantities on the 3D
location z will be indicated with a subscript to be more
consistent with the later discrete formulation, i.e. xi(z) = xiz .
With this notation in place, the convex relaxation of the
labeling problem in a continuous volumetric domain Ω reads
as

Econt(x,y) =

∫
Ω

∑
i

ρizx
i
z +

∑
i,j:i<j

φijz (yijz ) dz, (1)



where yij : Ω → [−1, 1]3, i ∈ {0, . . . , L} with j > i
are “jump processes” satisfying a modified marginalization
constraint

∇zxi =
∑
j:j>i

yij −
∑
j:j<i

yji. (2)

ρi : Ω → R encodes the local preference for a particular
label. Note that the smoothness term in Eq. 1 is an extension
of the standard length/area-based boundary regularizer to
Finsler metrics (see e.g. [16]) and the infinitesimal length
functions φijz : R3 → R+

0 are naturally extended from S2 to
R3, rendering φijz a convex and positively 1-homogeneous
function. Such choice of φijz generalizes the notion of total
variation to location and orientation dependent penalization
of segmentation boundaries. In addition to the marginaliza-
tion constraints in Eq. 2, the functions xi also need to satisfy
the normalization constraint,

∑
i x

i ≡ 1, and non-negativity
constraints. We refer to [25] for a detailed derivation and
theoretical interpretation of this energy. A minimizer (x,y)
induces a partition of Ω into free space and respective object
categories. The boundaries between the individual regions
form the 3D surfaces of interest.

3.2. Discretized Formulation

A disadvantage of this continuous energy formulation is
that the class of smoothness priors φijs is restricted to metrics
under reasonable assumptions (see e.g. [12]). Consequently,
we focus our attention on discrete lattices (i.e. regular voxel
grids) as underlying domain where these restrictions do not
apply. Hence, Ω denotes a finite voxel grid with voxels
s ∈ Ω in the following. A discrete version of the continuous
energy in Eq. 1 not requiring a metric prior reads as [24]

Ediscr(x) =
∑
s∈Ω

(∑
i

ρisx
i
s +

∑
i,j:i<j

φijs (xijs − xjis )
)

(3)

subject to the following marginalization, normalization and
non-negativity constraints,

xis =
∑
j

(xijs )k, xis =
∑
j

(xjis−ek)k (k ∈ {1, 2, 3})

xs ∈ ∆, xijs ≥ 0. (4)

ek ∈ R3 denotes the k-th canonical basis vector and (·)k is
the k-th component of its argument. The discrete marginal-
ization constraints above follow from Eq. 2 by employing
a forward finite difference scheme for the spatial gradient.
The probability simplex of appropriate dimension is denoted
by ∆. The variables appearing in Eq. 3 have the following
interpretation in the context of joint surface reconstruction
and segmentation tasks:

• xis encodes whether label i (i.e. free space or one of the
solid object categories) is assigned at voxel s,

• xijs − xjis ∈ [−1, 1]3 represents the local surface orien-
tation if it is non-zero,

• ρis is the unary data term encoding the measured ev-
idence, i.e. the preference of voxel s for a particular
label i. This data term captures the evidence from two
sources: firstly, the measurements from a set of depth
maps, and secondly, appearance-based classification
scores from the input images as obtained from previ-
ously trained classifiers. Section 4 describes in detail
how this unary term is modeled.

• Finally, φijs is the location and direction-dependent
smoothness prior indicating the local compatibility of a
boundary between label i and j. Hence, these priors en-
code the previously mentioned class-specific geometric
priors. Of highest importance is the directly observable
boundary between free space and any of the object cat-
egories. Modeling φijs from training data is explained
in Section 5.

We will restrict ourselves to homogeneous priors in the fol-
lowing, i.e. the local smoothness contribution φijs (xijs − xjis )
does not depend on s, and the objective in Eq. 3 slightly
simplifies to

Ediscr(x) =
∑
s∈Ω

(∑
i

ρisx
i
s +

∑
i,j:i<j

φij(xijs − xjis )
)
. (5)

The rationale behind the spatial homogeneity assumption
is that only the orientation of a boundary surface and the
affected labels are of importance, but not the precise location.

Once the values of ρis are determined and the smoothness
priors φij are known, the task of inference is to return an
optimal volumetric labeling. Since we employ a convex
problem stated in Eq. 3, any convex optimization suitable
for non-smooth programs can be utilized. After introducing
Lagrange multipliers for the constraints and after biconju-
gation of the smoothness term we are able to directly apply
the primal-dual algorithm proposed in [4]. We briefly out-
line the numerical scheme used in our experiments in the
supplementary material.

4. The Ray Likelihood and Its Approximation
In this section we describe how available depth maps

(with potentially missing depth values) and appearance-
based class likelihoods are converted into respective unaries
ρ for joint volumetric reconstruction and classification as
described in the previous section. A completely sound graph-
ical model relating image observations with occupancy states
of 3D voxels requires observation likelihoods corresponding
to clique potentials with entire rays in 3D forming cliques
(e.g. [14]). In the following we argue that—under suitable
smoothness assumptions on the solution—we can approx-
imate the higher-order clique potentials by suitable unary



ones. We aim on factorizing the clique potential into only
unary terms such that the induced (higher-order) cost of a
particular boundary surface is approximated by the unaries.
Additionally we employ the usual assumption of indepen-
dence of observations across images. This means, that the
unary potentials described below based on color images (and
associated depth maps) are accumulated over all images to
obtain the effective unary potentials.

In the following we consider a particular pixel p in one of
the input images (respectively depth maps, since we assume
that depth images use color images as their reference views).
The pixel p induces a ray in 3D space, which leads to a
set of traversed voxels s ∈ ray(p) and the corresponding
latent variables xis and their associated unary potentials ρis.
Recall that i indexes one of the L + 1 semantic categories
{0, 1, . . . , L} with 0 corresponding to sky (i.e. free space)
and i indicating object category i, respectively. Our task is
to (approximately) model the likelihoods

P
(
d̂(p), Â(p) | {xis}s∈ray(p)

)
, (6)

where d̂(p) is the observed depth at pixel p (which may be
missing), and Â(p) encapsulates the local image appearance
in the neighborhood of p. Note that in terms of a graphical
model the respective potential, −logP

(
d̂, Â | {xis}s∈ray(p)

)
,

depends on the entire clique {s : s ∈ ray(p)}. Clearly, for
a particular ray the likelihoods of observing d̂(p) and Â(p)
only depend on the first crossing from freespace to occupied
space. Nevertheless, proper handling of voxel visibility links
all voxels along the ray to form a clique.

For notational convenience we will drop the dependence
on the pixel p, and also index voxels along ray(p) by their
depth with respect to the current view. We will substantially
simplify the potentials (and therefore the inference task) by
considering the following cases:

Observed depth: This is the case when d̂ in the depth
map is valid (i.e. not missing). In this case we assume that
Eq. 6 factorizes into

P
(
d̂, Â | voxel d is first crossing to i

)
= P (d̂ | d)P (Â | i),

where P (d̂ | d) captures the noise for inliers in the depth
sensing process and is usually a monotonically decreasing
function of |d − d̂|. P (Â | i) is induced by the confidence
of an appearance-based classifier for object category i.

We only define non-zero unaries for voxels along the ray
near the observed depth. Assume that the inlier noise of
depth estimation is bounded by δ, and we denote by d̂± δ
the voxels along the ray with distance δ and−δ, respectively.
We set the unary potentials

ρi
d̂+δ

= σclass i ρid =

{
0 for i = 0

η(d̂− d) for i > 0.
(7)

for voxels d near the observed depth, i.e. voxels d closer
to d̂ than δ. Here σclass i = − logP (Â | i) (with class 0
corresponding to sky). The function η : [−δ, δ] → R is
independent of the object category i and reflects the noise
assumptions of d̂. We choose η(d̂− d) = β sgn(d̂− d) for
β > 0, corresponding to an exponentially distributed noise
for depth inliers. Inserting unaries only near the observed
depth corresponds to truncating the cost function, hence
we assume exponentially distributed inliers and uniformly
distributed outlier depth values. See Fig. 2 for an illustration
of unaries along the ray.

σclass i

weight

0

β

surface

Figure 2: Unaries assigned to voxels along a particular line-
of-sight.

Since we enforce spatial smoothness of the labeling (i.e.
multiple crossings within the narrow band near d̂ are very
unlikely), we expect three possible configurations for voxels
in [d̂− δ, d̂+ δ] described below. For each configuration we
state the contribution of unary terms for the particular ray to
the complete energy.

1. In the labeling of interest we have that free-space tran-
sitions to a particular object class i at depth d. Hence,
x0
s = 1 for s ∈ [d̂− δ, d) and xis = 1 for s ∈ [d, d̂+ δ].

Summing the unaries according to Eq.7 over the voxels
in [d̂− δ, d̂+ δ] yields

σclass i +
∑

d′∈[d,d̂+δ]

η(d̂− d′),

i.e. the negative log-likelihood of observing the appear-
ance category i in the image and the one corresponding
to the depth noise assumption. Note that the second
term,

∑
d′ η(d̂− d′) will be non-positive and therefore

lower the overall energy. This beneficial term is not
appearing in the other cases below.

2. If all voxels in the particular range [d̂ − δ, d̂ + δ] are
freespace (x0

s = 1 for all the voxels in this range), then
the contribution to the total energy is just σsky. Since
a potential transition to a solid object class outside the
near band is not taken into account, this choice of unary
potentials implicitly encodes the assumption that that
freespace near the observed depth implies freespace
along the whole ray.

3. All voxels in the range are assigned to object label i (i.e.
xis = 1 for s ∈ [d̂ − δ, d̂ + δ]. This means that there



was a transition from freespace to object type i earlier
along the ray. Thus, the contribution to the energy is
σclass i in this case.

Overall, our choice of unaries will faithfully approximate
the desired true data costs in most cases. Since camera
centers are in free-space by definition, we add a slight bias
towards free-space along the line-of-sight from the respec-
tive camera center to the observed depth (i.e. voxels in the
range [0, d̂ − δ]). This has also a positive influence on the
convergence speed.

Missing depth: If no depth was observed at a particular
pixel p, we cannot assign unaries along the corresponding ray.
Since missing depth values mostly occur in the sky regions
of images, we found the following modification helpful to
avoid “bleeding” of buildings etc. beyond their respective
silhouettes in the image: in case of missing depth we set the
unary potentials to

ρ0
s = min {0, σsky −mini 6=sky σi} (8)

and ρis = 0 for i > 0 for all voxels s along ray(p). This
choice of unaries favors freespace along the whole ray when-
ever depth is missing and sky is the most likely class label
in the image.

5. Training the Priors
In this section, we will explain how the appearance likeli-

hoods used in the unary potentials ρis and the class-specific
geometric priors φij are learned from training data. While
the appearance terms are based on classification scores of a
standard classifier, training of geometric priors from labeled
data is more involved. We first start describing the training
of the appearance likelihoods before discussing the training
procedure for smoothness priors.

5.1. Appearance Likelihoods

In order to get classification scores for the labels in the
input images we train a boosted decision tree classifier [7]
on manually labeled training data. In a first step, the training
images are segmented into super-pixels using the mean shift
segmentation algorithm1. Features are extracted for each
super-pixel. We use the default parameters as implemented
by [7], resulting in 225 dimensional feature vectors based on
color, intensity, geometry, texture and location. It should be
noted that the geometry and location features are extracted by
using 2-D information on the images (superpixel size, shape,
and relative position in the image) and they are not related
to the 3-D geometry of the scene. The extracted features and
ground truth annotations are fed into the boosted decision
tree. The classifier is trained over 5 classes: sky, building,

1OpenCV implementation

ground, vegetation, and clutter. We use 2 splits per decision
tree and 200 boosting rounds. We designed a training dataset
by taking 76 images from the CamVid dataset [3] and 101
images from the MSRC dataset. We also added 34 images
taken at street level of different buildings. These buildings
are not part of the evaluation data set.

Once the classifier is trained, it can be used to obtain
scores for each region of the input images. These scores
represent the log-likelihoods of each class for each region of
the image.

5.2. Class-Specific Geometric Priors

We use a parametric model for the functions φijs appear-
ing in the smoothness term of Eq. 5. As already mentioned
we restrict ourselves to spatially homogeneous functions
φijs = φij , and thus there is no dependency on the location
s. Note that the energy formulation in Eq. 5 naturally corre-
sponds to a negative log-probability. Hence, the functions
φij will be also interpreted as negative log-probabilities. Let
si↔j denote a transition event between labels i and j at some
voxel s, and let nijs be the (unit-length) boundary normal at
this voxel. Instead of modeling φij directly, we use

P (nijs ) = P (nijs | si↔j)P (i↔ j), (9)

where we applied the homogeneity assumption, i.e.
P (si↔j) = P (i ↔ j). The conditional probability,
P (nijs | si↔j) is now modeled as a Gibbs probability mea-
sure

P (nijs | si↔j) = exp
(
−ψij(nijs )

)
/Zij , (10)

for a pos. 1-homogeneous function ψij . Zij is the respective
partition function, Zij def

=
∫
n∈S2 exp

(
−ψij(nij)

)
dn, and

S2 is the 3-dimensional unit sphere. Consequently, φij in
Eq. 5 is now given by

φij(n) = ψij(n) + logZij − logP (i↔ j) (11)

for a unit vector n ∈ S2. Maximum-likelihood estimation is
used to fit the parameters to available training data, formally

θ = arg max
θ

∏
s

∏
i,j

P (nijs | si↔j)P (i↔ j), (12)

where the product goes over all training samples s and ψij

and Zij are functions of the parameters θij which are gath-
ered in θ = {θij | i, j ∈ {0, . . . , L}}. In our implemen-
tation, we estimate the discrete probabilities P (i↔ j) of
observing a transition i↔ j upfront by counting the relative
frequencies N ij/

∑
i,j N

ij of the respective type of bound-
aries from training data. Estimating first P (i↔ j) has the
advantage that the ML-estimation in Eq. 12 decouples into
independent estimation problems of the form

θij = arg min
θij

Nij∑
k=1

ψij(nijk ; θij) +N ijZij(θij), (13)



Figure 3: A section of the cadastral city model used to train
the geometric priors.

where the summation goes over all the N ij transition sam-
ples nijk between labels i and j. Since for many choices
of ψij the partition function cannot be solved analytically,
we use Monte Carlo integration to obtain an estimate for
Zij . Given the low dimensionality of θij (up to 4 compo-
nents, see Section 5.3 below) and the necessity of Monte
Carlo integration for the partition function, we use a simple
grid search to find an approximate minimizer θij . As train-
ing data we use a three dimensional cadastral city model
(see Fig. 3) which enables us to train ψij for the transitions
ground↔ free space, ground↔ building and building↔
free space. Label transitions unobserved in the training data
are defined manually. At this point we need to address two
small technical issues:
Remark 1. φij is only specified for unit vectors n ∈ S2,
but the argument in the energy model Eq. 5 are usually non-
normalized gradient directions yijs

def
= xijs − xjis ∈ [−1, 1]3.

However, remember that ψij is a convex and positively 1-
homogeneous function. Together with the fact that the area
of the surface element in finite difference discretizations is
captured exactly by ‖yijs ‖2, we derive the contribution of yijs
to the regularizer as

‖yijs ‖2φij
(
yijs /‖yijs ‖2

)
= φij(yijs )

by the 1-homogeneity of φij . Therefore, the extension of
φij as given in Eq. 11 to arbitrary arguments y ∈ R3 is

φij(y) = ψij(y) + ‖y‖2
(
logZij − logP (i↔ j)

)︸ ︷︷ ︸
def
=Cij

. (14)

Consequently, our smoothness prior φij will always be com-
posed of an anisotropic, direction-dependent component
ψij and an isotropic contribution proportional to Cij =
logZij − logP (i ↔ j). This also implies that there is no
need to explicitly model any isotropic component in ψij .
Remark 2. The function φij given in Eq. 14 above is posi-
tively 1-homogeneous if ψij is, but convexity can only be
guaranteed whenever Cij = logZij − logP (i↔ j) ≥ 0 or
P (i↔ j) ≤ Zij . This is in practice not a severe restriction,
since for a sufficiently fine discretization of the domain the
occurrence of a boundary surface is a very rare event and
therefore P (i↔ j)� 1.

5.3. Choices for ψij

We need to restrict ψij to be convex and positively 1-
homogeneous. One option is to parametrize ψij(n) =

ψij(n; θ) in the primal and to limit θ such that the resulting
ψij has these properties, but this may be difficult in gen-
eral. We choose a slightly different route and parametrize
the convex conjugate of ψij ,

(
ψij
)∗

,(
ψij
)∗

(p) = max
n

{
pTn− ψij(n)

}
= ıWψij

(p),

i.e. the indicator function for a (convex) shape Wψij (which
will be called a Wulff shape [17] in the following). We find
it easier to model parametric convex Wulff shapes Wψij

rather than ψij directly. Below we describe the utilized
Wulff shapes and its parametrizations. Which Wulff shape
is picked for ψij (in addition to its continuous parameters)
is part of the ML estimation. The description below is for
Wulff shapes in a canonical position, since any ψ induced by
a rotated shape can be expressed using a canonical one,

ψ(n;R) = max
p∈R·Wψ

pTn = max
p∈Wψ

(Rp)Tn = ψ(RTn; I).

Given remark 1 above there is no need to model the Wulff
shape with an isotropic and an anisotropic component (i.e. as
Minkowski sum of a sphere and some other convex shape).

The Wulff shapes described below are designed to model
two frequent surface priors encountered in urban environ-
ments: one prior favors surface normals that are in alignment
with a specific direction (e.g. ground surface normals prefer
to be aligned with the vertical direction), and the second
Wulff shape favors surface normals orthogonal to a given
direction (such as facade surfaces having generally normals
perpendicular to the vertical direction). In order to obtain a
discriminative prior we assume that an approximate vertical
direction is provided. We refer to the supplementary material
for graphical illustrations of the Wulff shapes and induced
smoothness costs.

Line Segment This Wulff shape has only one parameter l
and is a line segment in z-direction centered at the origin with
length 2l (i.e. its endpoints are (0, 0, l)T and (0, 0,−l)T ).
This shape translates to a function ψ(n) = l|n3|, which is
convex as long l ≥ 0.

Half-sphere plus spherical cap This Wulff shape Wψ

consists of a half-sphere with radius r centered at the origin
in opposition to a spherical cap with height h. The corre-
sponding function ψ favors directions pointing upwards and
isotropically penalizes downward pointing normals. ψ can
be computed in closed form (with n = (n1, n2, n3)T ),

ψ(n) =


r‖n‖ if n3 ≤ 0

‖n‖
(
r2

2h + h
2

)
− n3

(
r2

2h −
h
2

)
if (∗)

r ‖( n1
n2

)‖ otherwise,



where (∗) is n3 > 0 and n3(h2 + r2) > (r2 − h2)/‖n‖. By
construction Wψ is convex (and therefore also ψ) as long as
r ≥ 0 and h ∈ [0, r].

6. Experiments

In this section we present the results obtained on four
challenging real world datasets. We compare our geometry
to a standard volumetric fusion (in particular “TV-Flux” [23])
and also illustrate the improvement of the class segmentation
compared to a single image best-cost segmentation.

We use the dataset castle P-30 from [21] and three addi-
tional urban datasets ranging from 127 to 195 images in the
dataset size. Camera poses where obtained with the publicly
available structure from motion pipeline [26]. The depth
maps are computed using plane sweep stereo matching for
each of the images with zero mean normalized cross correla-
tion (ZNCC) matching costs. Up to nine images are matched
to the reference view simultaneously with best K occlusion
handling. To get rid of the noise the raw depth maps are
filtered by discarding depth values with a ZNCC matching
score above 0.4. The class scores are obtained by using the
boosted decision tree classifier explained in Section 5.1. To
align the voxel grid with the scene we use the approach de-
scribed in [5]. We use a multi-threaded C++ implementation
to find a minimizer of Eq. 5 (running on a 48 cores).

Fig. 4 illustrates the results for all 4 datasets. As expected,
computational stereo in particular struggles with faithfully
capturing the ground, which is represented by relatively few
depth samples. Consequently, depth integration methods
with a generic surface prior such as TV-Flux easily remove
the ground and other weakly observed surfaces (due to the
well-known shrinking bias of the employed boundary regu-
larizer). In contrast, our proposed joint optimization leads
to more accurate geometry, and at the same time image seg-
mentation is clearly improved over a greedy best-cost class
assignment.

The third column in Fig. 4 illustrates that the most prob-
able class labels according to the trained appearance like-
lihoods especially confuses ground, building, and clutter
categories. Fusing appearance likelihood over multiple im-
ages and incorporating the surface geometry almost perfectly
disambiguates the assigned object classes. The joint deter-
mination of the right smoothness prior also enables our ap-
proach to fully reconstruct ground and all the facades as seen
in Fig. 4, 4th column. The ground is consistently missing
in the TV-Flux results, and partially the facades and roof
structure suffer from the generic smoothness assumption
Fig. 4, 5th column). We selected a weighting between data
fidelity and smoothness in the TV-Flux method such that
successfully reconstructed surfaces have a (visually) similar
level of smoothness than the results of our proposed method.

7. Conclusion
We present an approach for dense 3D scene reconstruction

from multiple images and simultaneous image segmentation.
This challenging problem is formulated as joint volumetric
inference task over multiple labels, which enables us to
utilize class-specific smoothness assumptions in order to
improve the quality of the obtained reconstruction. We use
a parametric representation for the respective smoothness
priors, which yields a compact representation for the priors
and—at the same time—allows to adjust the underlying
parameters from training data. We demonstrate the benefits
of our approach over standard smoothness assumptions for
volumetric scene reconstruction on several challenging data
sets.

Future work needs in particular to address the scalabil-
ity of the method. As a volumetric approach operating in
a regular voxel grid, our method shares the limitations in
terms of spatial resolution with most other volumetric ap-
proaches. Adaptive representations for volumetric data can
be a potential solution. We also plan to extend the number
of object categories to obtain a finer-grained segmentation.
Note that not all pairwise transitions between labels in 3D
are equally important or even occur in practice. This fact
can be utilized to improve the computational efficiency of
our proposed formulation.
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