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Abstract—Advanced driver assistance systems (ADASs), and particularly pedestrian protection systems (PPSs), have become an

active research area aimed at improving traffic safety. The major challenge of PPSs is the development of reliable on-board pedestrian

detection systems. Due to the varying appearance of pedestrians (e.g., different clothes, changing size, aspect ratio, and dynamic

shape) and the unstructured environment, it is very difficult to cope with the demanded robustness of this kind of system. Two

problems arising in this research area are the lack of public benchmarks and the difficulty in reproducing many of the proposed

methods, which makes it difficult to compare the approaches. As a result, surveying the literature by enumerating the proposals

one-after-another is not the most useful way to provide a comparative point of view. Accordingly, we present a more convenient

strategy to survey the different approaches. We divide the problem of detecting pedestrians from images into different processing

steps, each with attached responsibilities. Then, the different proposed methods are analyzed and classified with respect to each

processing stage, favoring a comparative viewpoint. Finally, discussion of the important topics is presented, putting special emphasis

on the future needs and challenges.

Index Terms—ADAS, pedestrian detection, on-board vision, survey.

Ç

1 INTRODUCTION

DUE to the rise in the popularity of automobiles over the
last century, road accidents have become an important

cause of fatalities. About 10 million people become traffic
casualties around the world each year, and two to three
million of these people are seriously injured [1], [2]. For
instance, in 2003, the United Nations reported almost
150,000 injured and 7,000 killed in vehicle-to-pedestrian
accidents just in the European Union alone [3].

Both the scientific community and the automobile
industry have contributed to the development of different
types of protection systems in order to improve traffic
safety. Initially, improvements consisted of simple mechan-
isms like seat belts, but then more complex devices, such as
antilock bracking systems, electronic stabilization programs, and
airbags, were developed. Over the last decade, research has
moved toward more intelligent on-board systems that aim
to anticipate accidents in order to avoid them or to mitigate
their severity. These systems are referred to as advanced

driver assistance systems (ADASs) [2], [4], [5], as they assist
the driver in marking decisions, provide signals in possibly
dangerous driving situations, and execute counteractive
measures. Some examples are the adaptive cruise control,
which maintains a safe gap between vehicles and the lane

departure warning that acts when the car is driven out of a
lane inadvertently.

In this paper, we focus on a particular type of ADAS,
pedestrian protection systems (PPSs). The objective of a PPS is
to detect the presence of both stationary and moving people
in a specific area of interest around the moving host vehicle
in order to warn the driver, perform braking actions, and
deploy external airbags if a collision is unavoidable (evasive
actions could be an option if the pedestrian surroundings
are sensed). Accident statistics indicate that 70 percent of
the people involved in car-to-pedestrian accidents were in
front of the vehicle, of which 90 percent were moving [6].
Therefore, PPSs typically use forward-facing sensors.

The main challenges of a PPS involve detection of
pedestrians. These challenges are summarized by the
following points:

. The appearance of pedestrians exhibits very high
variability since they can change pose, wear different
clothes, carry different objects, and have a consider-
able range of sizes (especially in terms of height).

. Pedestrians must be identified in outdoor urban
scenarios, i.e., they must be detected in the context
of a cluttered background (urban areas are more
complex than highways) under a wide range of
illumination and weather conditions that vary the
quality of the sensed information (e.g., shadows
and poor contrast in the visible spectrum). In
addition, pedestrians can be partially occluded by
common urban elements, such as parked vehicles or
street furniture.

. Pedestrians must be identified in highly dynamic
scenes since both the pedestrian and camera are in
motion, which complicates tracking and movement
analysis. Furthermore, pedestrians appear at differ-
ent viewing angles (e.g., lateral and front/rear
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positions) and the system must work over a large
range of distances (at least 25 m, which roughly
corresponds to a 30� 60 pixel pedestrian with a
typical 6 mm focal length 640� 480 pixel camera).

. The required performance is quite demanding in
terms of system reaction time and robustness (i.e.,
false alarms versus misdetections).

It is clear that the topic differs from general human
detection systems, such as surveillance applications or
human-machine interfaces, for which some simplifications
can be implemented. For example, use of a static camera
allows the use of background subtraction techniques.1

The first investigations on pedestrian detection for PPSs
were presented in the late 1990s. Since then, PPSs have
become a hot technological challenge that is of major
interest to governments, automotive companies, suppliers,
universities, and research centers. As a result, many papers
addressing on-board pedestrian detection have been pub-
lished, a few of which partially survey the state of the art.
For instance, in 2001, Gavrila [9] overviewed the few
existing systems at that time, focusing on the employed
sensors. In 2006, Gandhi and Trivedi [10] followed the same
approach, but focused on the aspects of collision prediction
and pedestrian behavior analysis. The same authors
recently presented a survey that reviews infrastructure
developments, sensors, and pedestrian detection ap-
proaches in a general transport safety context, rather than
focusing especially on on-board detection [11]. Never-
theless, unlike other fields, such as face or vehicle detection,
in which in-depth reviews analyzing the algorithms and
successful systems have been presented (e.g., [12], [13]),
pedestrian detection for ADAS lacks an exhaustive review.

The contribution of this survey is threefold. First, it
presents a general module-based architecture that simpli-
fies the comparison of specific detection tasks. The same
system breakdown has been successfully used in a short
paper [14] to analyze different systems that work in the
visible spectrum. Second, it provides a comprehensive up-
to-date review of state-of-the-art sensors and benchmark-
ing. Unlike [11], this paper focuses on the techniques used
in PPSs, rather than on general pedestrian safety. Moreover,
we review different approaches according to the specific

tasks defined in the aforementioned architecture, and thus,
the description and comparison of each are more detailed.
Third, we provide analysis and discussion. Due to the lack
of common benchmarks for validation and the complexity
of reproducing different approaches, quantitative compar-
isons become difficult. We present an analysis of the most
important proposals in each module and provide quanti-
tative evaluation when possible. In addition, general
discussions of the overall systems are also given, pointing
out the current limitations and future trends from a more
general viewpoint.

The remainder of the paper is organized as follows: In
Section 2, we propose a decomposition of PPSs into
different processing steps. This architecture is then used
as a common framework in which we review the different
proposals in the literature, making it easier to understand
the requirements, responsibilities, and advantages of the
techniques in each module. While most of the approaches
use a single type of sensor (camera), some authors propose
the fusion of complementary sensors. Such alternative
sensors are reviewed at the end of the section. The different
techniques used by the most relevant systems are concisely
detailed in Tables 2, 3, 4, and 6. Benchmarking, which is a
crucial topic in any intelligent system, is explained in
Section 3. Discussion of the most important topics for future
research, with special emphasis on challenges and needs, is
presented in Section 4. Finally, in Section 5, we summarize
the aims, content, and conclusions of this paper.

2 LITERATURE REVIEW

The following modules are proposed for splitting the
architectures of pedestrian detectors for PPSs, listed
according to the processing pipeline order: preprocessing,
foreground segmentation, object classification, verification/
refinement, tracking, and application. Fig. 1 shows a
schematic overview of the modules.

Although some of the proposed modules are not
present in the surveyed works and others can be grouped
into just one algorithm, we think that most of the systems
can be conceptually broken down to fit this architecture
for the purpose of comparison. Such a breakdown of any
complex system is necessary to provide an ordered
analysis of disparate methods. For instance, in Sun’s
vehicle detection review [13], techniques are divided into
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1. We refer the reader to the surveys in [7] and [8] for more details about
human detection in applications different other than PPSs.

Fig. 1. The architecture proposed for an on-board pedestrian detection system, exemplified for the case of using a camera sensor working in the
visible spectrum. The diagram is a simplification that covers the structure of most of the systems, so particular module organizations presented in
some papers, for example, interchanging tracking and verification stages, have not been included. However, potential feedback between modules
(e.g., tracking-foreground segmentation) is becoming common, so it has been illustrated by the top arrows.



hypothesis generation and hypothesis validation, thus
allowing the reader to concentrate on the methods for
solving simpler problems, rather than approaching the
problem as a whole.

The following sections (Sections 2.1-2.6) describe the
mentioned modules, review the existing techniques, and
provide some analysis and comparison when possible. In
order to provide a sensible comparison of the analyzed
approaches, all of the works in these sections make use of
passive sensors, i.e., cameras that work in either the visible
(typically, for daytime) or infrared (for nighttime) spectra.
In fact, they are the most commonly used sensors for PPSs.
Henceforth, we will refer to the visible spectrum as VS (i.e.,
the range 0.4-0.75 �m) and the infrared either as NIR (near
infrared, 0.75-1.4 �m) or TIR2 (thermal infrared, 6-15 �m).
The sensibility of NIR sensors ranges from 0.4 to 1.4 �m, so
it can be said that they work in the VS+NIR spectrum.
Regarding TIR sensors, they capture relative temperature,
which is very convenient for distinguishing hot targets like
pedestrians or vehicles from cold ones like asphalt or trees.
For the sake of completeness, we include Section 2.7 that
describes other sensors and review some systems that
exploit the so-called sensor fusion. Finally, Tables 2, 3, 4, 5,
and 6 provide some details in a visual comparative manner
that have been omitted from the text.

2.1 Preprocessing

The preprocessing module includes tasks such as exposure
time, gain adjustments, and camera calibration, to mention
a few.

2.1.1 Review

Although low-level adjustments, such as exposure or
dynamic range, are normally not described in ADAS
literature, some recently published papers have targeted
image enhancement through these systems. Real-time ad-
justments are a recurring difficulty in this area, especially in
urban scenarios. For example, short tunnels, narrow streets,
and the rapid motion of the scene (common conditions in
PPSs) can result in images with over/undersaturated areas or
poorly adjusted dynamic range, which creates additional
difficulties for the latter algorithms in the system. Although
not specifically devoted to ADAS, Nayar and Branzoi [15]

present some approaches for performing a locally adaptive
dynamic range: fusion of different exposures, spatial filter
mosaicing and pixel exposures, multiple image/pixel sen-
sors, etc. Besides, during recent years, solutions exploiting
High Dynamic Range (HDR) images [16], [17] have gained
interest in driver assistance due to their potential to provide
high contrast in the aforementioned scenarios. In fact, HDR
cameras cover the VS+NIR spectrum, so they are also useful
for nighttime vision.

Camera calibration is another main topic in the proces-
sing module. Few approaches tackle both intrinsic and
extrinsic on-board self-calibration [18], [19]. The most
common approach is to initially compute the intrinsic
parameters, and then, to assume that they are constant
while the extrinsic parameters are continuously updated.
This procedure, which is often referred to as camera pose
estimation, avoids the so-called constant road slope
assumption, a simplification that is not applicable to real
PPSs given the road slope variability in urban scenarios and
the changes in vehicle dynamics.

The existing approaches can be divided into two
categories: monocular-based and stereo-based. In the former
case, the algorithms are mainly based on the study of visual
features. In [20], [21], Broggi et al. correct the vertical image
position by relying on the detection of horizontal edges
oscillations: The horizon line is computed according to the
previous frames. A comparative study of different mono-
cular camera pose estimation approaches has been presented
in [22]. It included horizontal edges, features-based, and
frame difference algorithms. Recently, Hoiem et al. [23]
presented a probabilistic framework for 3D geometry
estimation based on a monocular system. A training process,
based on a set of 60 manually labeled images, is applied to
form a prior estimated of the horizon position and camera
height (i.e., camera pose values).

Regarding stereo-based pose estimation, Labayrade et al.
introduced v-disparity space [24], which consists of accu-
mulating stereo disparity along the image y-axis in order to
1) compute the slope of the road (which is related to the
horizon line) and 2) point out the existence of vertical objects
when the accumulated disparity of an image row is very
different from its neighbors (Fig. 2d). Extensions of this
representation can be found in [25]. Other approaches work
in euclidean space. For instance, Sappa et al. [26] proposed
fitting 3D road data points to a plane, whereas Nedevschi
et al. [27] use a clothoid. In the euclidean space, classical least
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Fig. 2. Foreground segmentation schemes. (a) Original image. (b) Exhaustive scan [31] (just showing 10 percent of the ROIs). (c) Sketch of road

scanning after road fitting in euclidean space [30]. (d) Results of v-disparity applied to the same frame [24].

2. The sensors that we refer to as TIR are sometimes called night vision,
thermal infrared, infrared alone, or far infrared (FIR).



squares fitting approaches can be followed, while in the
v-disparity space, voting schemes are generally preferred
(e.g., Hough transform). Recently, Ess et al. [28], [29]
proposed the use of pedestrian location hypotheses together
with depth cues to estimate the ground plane, which is used
to reinforce new detections tracks. The authors call this
approach cognitive feedback, in the sense that a loop is
established between the classification and tracking modules
and ground plane estimation.

2.1.2 Analysis

HDR sensors provide the possibility of obtaining highly
contrasted images in outdoor scenarios. This technology
will be of crucial importance in PPSs in order to avoid the
over/undersaturated regions that are typically seen in
ADAS imaging. In fact, many of the failures of current
detection algorithms correspond to poorly contrasted
images (see databases in Section 3), so this technology will
undoubtedly benefit the system performance.

Stereo-based approaches provide more robust results in
camera pose estimation than monocular approaches.
Horizon-like stabilizers are based on the assumption that
the changes in the scene are smooth, which is not always a
valid assumption in urban scenarios. Moreover, in such
monocular-based approaches, the global error increases
with time as long as the estimation depends on previous
frames (the drift problem). On the contrary, stereo-based
approaches (both disparity and 3D data) do not accumulate
errors and can provide information about the object’s
distance from the vehicle. It is not clear whether disparity-
based approaches are better than 3D data-based ap-
proaches. Each approach presents advantages, disadvan-
tages, and limitations. For example, disparity-based
approaches are generally faster than those based on 3D
data points are; however, they are limited to planar road
approximations, while 3D-based approaches allow plane,
clothoid, and any free form surface approximation. The
more recent of the reviewed works shows a clear trend
toward using stereo-based approaches to obtain accurate
camera pose estimates in spite of the additional CPU time
required for disparity/depth estimation.

2.2 Foreground Segmentation

Foreground Segmentation, which is also referred to as
candidate generation, extracts regions of interest (ROI) from the
image to be sent to the classification module, avoiding as
many background regions as possible. Although some
papers do not contain a specific segmentation module
(e.g., exhaustive scanning), these techniques are of remark-
able importance not only to reduce the number of
candidates, but also to avoid scanning regions like the
sky. The key to this stage is to avoid missing pedestrians;
otherwise, the subsequent modules will not be able to
correct the error. In describing this module, we will often
use the term pedestrian size constraints (PSCs), which refer to
the aspect ratio, size, and position that candidate ROIs must
fulfill to be considered to contain a pedestrian (e.g., in [30],
pedestrians are assumed to be around 1.70 m, with some
standard deviation, e.g., 20 cm, tall with a 1=2 aspect ratio;
hence, ROIs are constrained to these parameters).

2.2.1 Review

The simplest candidate generation procedure is an exhaus-
tive scanning approach [31], [32] that selects all of the
possible candidates in an image according to PSC, without
explicit segmentation. For instance, in [31], the authors start
by scanning the image with ROIs of 64� 128 pixels, moving
this window in increments of 8 pixels. Then, they reduce the
image size by a factor of 1.2 and perform the same scan
again. This procedure has two main drawbacks: 1) The
number of candidates is large (see Fig. 2b), which makes it
difficult to fulfill real-time requirements, although some
proposals have recently studied this problem [33], [34], [35],
and 2) many irrelevant regions are passed to the next
module (e.g., sky regions or ROIs inconsistent with
perspective), which increases the potential number of false
positives. As a result, other approaches are used to perform
explicit segmentation.

2D-based. Miau et al. [36], [37] use a biologically
inspired attentional algorithm that selects ROIs according
to color, intensity, and gradient orientation of pixels. In
several works from Parma University, the vertical symme-
tries in the visible [38], [39], [40], [41] and TIR spectra are
used alone [42], [20] or as a complement to stereoimaging
[39]. In this case, ROIs are adjusted around each symmetry
axis maintaining the PSC. The presence of many horizontal
edges is often taken into account as a nonpedestrian quality.

Intensity thresholding is the most intuitive segmentation
technique when dealing with TIR images. Some implemen-
tations include single thresholding [43], double image and
hot-spots-based thresholding [44], and adaptive intensity-
based thresholding [45], [46]. Another simple technique is
the use of vertical and horizontal histogram projection
together with thresholding [47], [48]. Hypermutation net-
works [49], which use a multistage neighborhood pixel
classification, are considered in more sophisticated ap-
proaches like [50], [51] to classify pixels as foreground/
background. In [50], output pixels from the network are
grouped using connected component analysis, so the
algorithm can be understood as a segmentation/classifica-
tion process.

Stereo. Franke and Kutzbach [52] present one of the first
stereo algorithms specifically developed for ADAS. Local
structure classification, which resolves ambiguities by the
use of a disparity histogram, is used to perform stereo
correspondence. They extended the algorithm with a
multiresolution method with subpixel accuracy in [53],
[54]. These works become more relevant when they are
used in the well-known PROTECTOR system [55]. In this
system, the returned map is multiplexed into different
discrete depth ranges, which are then scanned with PSC-
windows, taking into account the location of the ground
plane. If the depth features in one of the windows exceed a
given percentage, the window is added to the ROI list
supplied to the classifier.

Many authors [38], [56], [57] have made use of the
aforementioned v-disparity representation [24] to identify
ground and vertical objects. Extraction of candidate regions
bounding vertical objects is straightforward after the
removal of road surface points. These approaches are based
on the fact that a plane (i.e., road surface) in euclidean space
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becomes a straight line in the v-disparity space (Fig. 2d). In
[30], Gerónimo et al. use stereo-based road plane fitting [26]
to dynamically select a set of ROIs that are lying on the
ground and satisfying the PSC avoiding the flat road
assumption (Fig. 2c). Disparity map analysis together with
PSC is also used to extract candidates [58], [39], [59].

Recently, Krotosky and Trivedi proposed the use of
multimodal stereo analysis to generate candidates, i.e.,
combining two different sensor types, like VS and TIR to
perform stereo [60] or a VS stereo pair matched with TIR
imaging [57]. This approach, which corresponds to sensor
fusion (detailed in Section 2.7), is worth mentioning here
because of its potential to widen the range of working
conditions, e.g., in the case of the tetra-camera configura-
tion, consisting of a VS pair for daytime and a TIR pair
for nighttime.

Motion-based. Interframe motion and optical flow [61]
have been used for foreground segmentation, primarily in the
general context of moving obstacle detection. Franke and
Heinrich [62] proposed to merge stereoprocessing, which
extract depth information without time correlation, and
motion analysis, which is able to detect small gray value
changes in order to permit early detection of moving objects.
In [63], Leibe et al. present a real-time Structure-from-Motion-
based approach for ground plane estimation. This online
estimated plane is used to update the camera calibration, and
thus, to segment objects from the ground surface.

2.2.2 Analysis

The exhaustive scan is typically used in general human
detection systems, e.g., image retrieval, whereas PPSs tend
to use some kind of segmentation, as shown in Table 2. In
fact, the latter can take advantage of some application prior
knowledge (e.g., it is not necessary to search the top area of
the image) so that the number of ROIs to process can be
greatly reduced. For example, a typical exhaustive scan on a
640� 480 image can provide from 200,000 to 1,000,000
ROIs, depending on the sampling step and the minimum
ROI size. In contrast, sampling just the estimated road can
reduce this number to 20,000-40,000, again depending on
the density of the scan. Furthermore, stereo-based segmen-
tation could further reduce this number by at least a factor
of 10, depending on the content of the scene.

According to the literature, stereo is the most successful
option. Two-dimensional-based analysis does not provide
convincing results at this stage. For instance, symmetry is not
very reliable, so extra cues such as depth are necessary, hot
spot analysis seems to be ruled by heuristics, and attentional
bottom-up pixel-based algorithms like [36] do not provide
accurate ROI positions, so the reduction of the number of
candidates is not as large as expected. More sophisticated
appearance-based techniques are likely to be used during
classification, not during candidates generation. In addition,
the accuracy of motion-based approaches depends on driving
speeds, and the reliability of those approaches has not been
demonstrated under the wide range of ADAS conditions.

Stereo-based systems present several advantages: 1) They
have good accuracy in the working range of pedestrian
detection, 2) they are robust to circumstantial variability
(e.g., illumination in VS or temperature in TIR), and 3) they
provide useful information for other modules (e.g., distance

estimations for tracking) and other ADAS applications (e.g.,
free space analysis [54], [64]). The drawbacks of such
systems are as follows: 1) blind areas in nontextured
regions, 2) slow speed (although advances in parallel data
processing are being studied [65]), and 3) a requirement for
postprocessing in order to separate regions with similar
disparity and position to fit the pedestrian size and aspect
ratio [58].

In conclusion, stereo is the primary option for future
systems. Along with the aforementioned properties, stereo
pairs are improving in accuracy, computation time, and
resolution, facilitating the development of new systems.
From our review, we conclude that an exhaustive study of
the effect of the baseline of stereo pairs on pedestrian
detection accuracy in urban environments is necessary. To
the best of our knowledge, only [26] and [56] specify
baseline information: 12 and 30 cm, respectively. A study of
how baseline and depth accuracy parameters affect PPSs
would implicitly relate the maximum vehicle speed and
pedestrian distance.

It is clear that in such an oriented application problem,
the use of scene prior knowledge plays a key role. A few
recent studies on more sophisticated algorithms based on
preattentive cues and context should be noted: Torralba
and coauthors [66], [67] and Hoiem et al. [23], [68]
groups. In these papers, the important roles of perspec-
tive, scene object dependencies, surfaces, and occlusions
in object detection are demonstrated. In addition, active
sensors (e.g., laser scanners), which can estimate distances
without high computation times (Section 2.7), are also
likely to be exploited in specific PPS tasks (e.g., short-time
collision detection).

2.3 Object Classification

The object classification module receives a list of ROIs that are
likely to contain a pedestrian. In this stage, they are classified
as pedestrian or nonpedestrian aiming, with the goal of
minimizing the number of false positives and false negatives.

2.3.1 Review

The approaches to object classification are purely 2D, and can
be broadly divided into silhouette matching and appearance.

Silhouette matching. The simplest approach is the binary
shape model, presented by Broggi et al. [39], in which an
upper body shape is matched to an edge modulus image by
simple correlation after symmetry-based segmentation. A
more sophisticated approach is the Chamfer System, a
silhouette-matching algorithm proposed by Gavrila et al.
[55], [69], [70]. This system consists of a hierarchical
template-based classifier (Fig. 3) that matches distance-
transformed ROIs with template shapes in a coarse-to-fine
manner. The shape hierarchy is generated offline by a
clustering algorithm. This technique has also been exploited
for TIR images in [51]. Also in the TIR spectrum, Nanda and
Davis [71] perform probabilistic template matching on a
multiscale basis by using just three templates (each for a
defined scale). In [44], Broggi et al. present two methods that
rely on templates, one of which is based on simple matching
and another based on leg position.

Appearance. The methods included in this group define
a space of image features (also known as descriptors), and a
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classifier is trained by using ROIs known to contain

examples (pedestrians) and counterexamples (nonpedes-

trians). Table 1 summarizes the typical learning algorithms

(classifiers) used in the literature.
Following a holistic approach (i.e., target is detected as a

whole) in [55], [70], Gavrila et al. propose a classifier that

uses image gray-scale pixels as features and a neural network

with local receptive fields (NN-LRFs [87]) as the learning

machine that classifies the candidate ROIs generated by the

Chamfer System. In [58], Zhao and Thorpe use image
gradient magnitude and a feedforward neural network.

Papageorgiou and Poggio [32] introduce the so-called
Haar wavelets (HWs) as features to train a quadratic

support vector machines (SVMs) with front- and rear-

viewed pedestrians. HWs compute the pixel difference

between two rectangular areas in different configurations

(Figs. 4a, 4b, and 4c), which can be seen as a derivative at a

large scale. Viola and Jones [79], [88] propose AdaBoost

cascades (layers of threshold-rule weak classifiers) as a

learning algorithm to exploit Haar-like features (the original

HWs plus two similar features, Figs. 4d and 4e), for

surveillance-oriented pedestrian detection. In this case,

HWs are also exploited to model motion information. These
features have been quite successful for object recognition.

Mählisch et al. [51] combined Haar-like features with the

Chamfer System in a system based on TIR imagery.

Recently, Gerónimo et al. [30] made use of Real AdaBoost

to select the best features among a set of Haar-like and edge

orientation histograms (EOHs; [89]) features to classify ROIs

in the VS. EOHs first compute the gradient magnitude of

the image, and then, distribute the pixels into k different

bins (in this case, k ¼ 4) according to their gradient

orientation. The features are defined as the ratio between

the summed gradient magnitudes of two bins for a given
rectangular region. For example, the feature

 ð0;�=4Þ
 ð�;3�=4Þ

, where

 a;b corresponds to the summed gradient magnitude of

pixels laying in the specified ða; bÞ angle interval, gives one

real value, which is fed as a feature to the threshold rule

classifier. Both Haar-like features and EOH can make use of

the integral image representation [79], which computes the

sum of pixels of a region in just four memory accesses.

Dalal and Triggs [31] present a human classification
scheme that uses SIFT-inspired [90] features, called histo-
grams of oriented gradients (HOGs), and a linear SVM as a
learning method. An HOG feature also divides the region
into k orientation bins (in this case, k ¼ 9), but instead of
computing the ratio between two bins, they define four
different cells that divide the rectangular feature, as
illustrated in Fig. 7. In addition, a Gaussian mask is applied
to the magnitude values in order to more heavily weight the
center pixels, and the pixels are interpolated with respect to
pixel location within a block (both factors disallow the use
of the integral image). The resulting feature is a 36D vector
containing the summed magnitude of each pixel cells,
divided into 9 bins. These features have been extensively
exploited in the literature. In [43], they are used for ADAS-
oriented pedestrian detection in TIR images, while Dalal
et al. [91] use them with optical flow images. Other papers
propose new learning approaches, making use of the same
features. Zhu et al. [33] use HOG as a weak rule of
AdaBoost, achieving the same detection performance, but
with less computation time, whereas Pang et al. [92] use
Multiple Instance Learning (concretely, Logistic Multiple
Instance Boost [83]) together with weak classifiers based on
graph embedding to model variations in pedestrians’ poses
and viewpoints. Recently, Maji et al. [93] have outper-
formed the state-of-the-art detectors by using multilevel
edge energy features (similar to HOG, but simpler) and the
Intersection Kernel SVM. First, they apply nonmaximum
suppression to each gradient orientation bin, which is then
used to construct a pyramid of histogram features at
different scales (64� 64, 32� 32, 16� 16, 8� 8). Intersec-
tion kernels are then used to train these features on an SVM.

Wu and Nevatia [94] studied the performance of short
segments (up to 12 pixels long) of lines or curves, referred to
as edgelets, as features for AdaBoost for VS images. In this
case, a mask is attached to each feature, in order to provide
pixelwise segmentation (Fig. 6). The same authors study
edgelets and HOG together with AdaBoost and SVM
learning algorithms, in both the VS and TIR [76]. Also,
exploiting local gradient orientation features, Sabzmeydani
and Mori [95] propose to use AdaBoost to model each n�n
cell (they test different cell sizes, n ¼ 5; 10; 15), with respect
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to its orientation. Each of the selected cells is referred to as a

shapelet feature.
Tuzel et al. [96] propose a novel algorithm that is based

on the covariance of different measures (position, first and

second-order derivatives, gradient module, and gradient

orientation) in subwindows as features, along with

LogitBoost [81] using Riemannian manifolds. The achieved

performance is comparable to state-of-the-art detectors,

while the computation time is comparable to [31].
Other features and learning algorithms used in the

literature include the gradient magnitude and quadratic

SVM [56], Four Directional Features and Gaussian kernel

SVM [59], and intensity image with Convolutional Neural

Networks [85] or with an SVM [46], [73].
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Part-based approaches, contrary to the previous holistic
techniques, combine the classification of different parts of
the pedestrian body (e.g., head and legs), instead of
classifying the entire candidate as a single entity.

Mohan et al. [74] use HWs and a quadratic SVM to
independently classify four human parts (head, legs, right
arm, and left arm). The classifications of these parts are
combined with a linear SVM. In [97], Shashua et al. use
13 overlapping parts (Fig. 5), described by SIFT inspired
[90] features, and ridge regression to learn the classifier of
each part. The training set is divided into nine clusters
according to pose and illumination conditions, resulting in
9� 13 ¼ 117 classifiers, in order to deal with high intraclass
variability. The outputs of the classifiers are fed as weak
rules to an AdaBoost machine that sets the final classifica-
tion rule. Wu and Nevatia [84] propose the use of four body
parts (full body, head-shoulder, torso, and legs) and three
view categories (front/rear, left profile, and right profile) to
train a nested-weak-classifier AdaBoost [82]. They use
edgelets as features. In this case, Bayesian reasoning,
together with a typical surveillance assumption (camera
looking down the plane), is used to combine the body parts.

In the case of [98], Parra et al. define the features as the
cooccurrence matrix between Canny edges and normalized
gray-scale image, the orientation histogram, the magnitude
and orientation of the image gradient, and the texture unit
number, which are then fed to an SVM classifier. Tran and
Forsyth [99] propose the estimation of the pedestrian pose
in the ROI by the use of structure learning, which provides
a tree parts configuration. After the estimation, the ROI
conditioned by this configuration can be classified.

Felzenszwalb et al. [100] sum the classification score of the
ROI and six different dynamic parts (they are not con-
strained to a unique position relative to the ROI). In this case,
the authors use what they call latent SVM and HOG. Dollár
et al. [101] extend the aforementioned Multiple Instance
Learning to a part-based scheme called Multiple Component
Learning, using Haar features. Here, gradient magnitude
and orientation features are used. Notably, both approaches
[100], [101] avoid the task of manually annotating parts since
they are automatically determined by the method.

Lin and Davis [102] have recently proposed a technique
that combines some of the aforementioned paradigms to a
greater or lesser extent, i.e., silhouette, appearance, holistic,
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and parts-based (see Fig. 8). First, HOG descriptors are

computed for the whole image following Dalal’s method.

Then, the descriptors are used to extract a silhouette, which

is fed to a probabilistic hierarchical part-matching algo-

rithm. Finally, HOGs are again computed for the closest

regions of the matched silhouette, serving as features for a

radial basis function (RBF) kernel SVM.
Other approaches. Following recent research in object

detection, Leibe et al. [103] present a technique termed as

the implicit shape model, which avoids the ROI generation

step. The idea is to use a keypoints detector, Hessian-

Laplace [104] in this case, then compute a shape context

descriptor [105] for each keypoint, and finally, cluster them

to construct a codebook. During recognition, each detected

keypoint is matched to a cluster, which then votes for an

object hypothesis using Hough voting, thus avoiding a

candidate generation step. The Chamfer distance is used to

provide a fine silhouette segmentation of the pedestrian. In

[106], [107], Seeman et al. improve this technique with

multiaspect (viewpoint and articulation) detection capabil-

ities, extending the hypothesis voting to object shapes,

rather than just objects.

2.3.2 Analysis

Silhouette matching methods are not applicable as stand-

alone techniques. Even the elaborate Chamfer System needs

an extra appearance-based step. In contrast, methods that

exploit appearance seem to indicate the current direction of

research, specifically revolving around the continuous

development of new learning algorithms and features for

use in this algorithms, not only in pedestrian detection but

also in general object classification.
Despite the large number of papers, approaches tend to be

poorly compared to one another in PPS research. Wojek et al.
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Fig. 8. Pose invariant algorithm by Lin and Davis (figure from [102]).

(a) Input image. (b) Part-template detections. (c) Pose and shape

segmentation. (d) Cells grid used for HOG computation. (e) HOGs.

(f) Cells relevant to HOG.

Fig. 7. Histograms of oriented gradients by Dalal and Triggs (figure from
[31]). (a) The descriptor block. (b) Block placed on a sample image.
(c) and (d) HOG descriptor weighted by positive and negative SVM
weights.

Fig. 6. First five edgelet features selected by AdaBoost in the approach
by Wu and Nevatia (figure from [94]).

Fig. 5. Part-based classification using gradient-based features by

Shashua et al. (figure from [97]).

Fig. 4. (a), (b), (c), (d), and (e) Haar wavelets and Haar-like features,

applied at specific positions of a pedestrian sample [32], [51], [30], [74].

Fig. 3. Hierarchy of templates used in the Chamfer System by Gavrila

(figure from [69]).



[34] try shed some light on the comparison of classifiers with
a study on some popular features and learning methods.
Two conclusions are highlighted: HOGs and shape context
features are the best option, independent of the learning
algorithm, and feature combination significantly improves
detector performance. In recent years, however, the lack of
comparisons has been amended due to Dalal’s proposal
(both detector [31] and database [31]), which has been
established as a de facto baseline. In fact, many of the
techniques proposed within the last two years [96], [99], [95],
[93], [100], [101], [102] use this benchmark, which makes it
feasible to gain insights into the proposed module.

Given the number of papers presented in recent years, it
is not possible to point to one method as the best option.
Nevertheless, some research directions are clearly gaining
relevance. Holistic classifiers seem to have reached their
performance limit, at least for current databases, and are
unable to deal with high variability. According to experi-
ments, nonstandard poses greatly affect their performance:
Beyond the usual straight versus crossing legs, pose
variability also affected the head and torso alignment in
the training examples. In addition, the diversity of poses
causes many pedestrians to be poorly represented during
training (e.g., running people, children, etc.). Parts-based
algorithms that rely on dynamic part detection [100], [99],
[107] handle pose changes better than holistic approaches.
This information has been demonstrated to be beneficial in
classification. Furthermore, other interesting ways to over-
come this variability are being explored (e.g., multiple
instance learning), which may provide additional benefits,
like relaxing the annotation process. Of course, any
improvement in existing algorithms, like the proposals in
[93], [107], or new features that exploit typical measures
(i.e., intensity, gradient, etc.) in new ways, like shape
context [105] or HOG [31], will contribute to the improve-
ment of these systems.

The real-time requirements of PPSs have been a
principal restriction on the features and algorithms; how-
ever, high computational cost is not necessarily a handicap.
For instance, there are works focused on optimizing
algorithms, like [35], which can compute HOGs roughly
seven times faster than was shown in the original proposal.
In this case, a multiresolution rejection scheme is used.
Additionally, computational power increases yearly, and
hardware implementations of existing algorithms are being
proposed. For example, two different GPU versions of the
HOG [108], [34] work 10 and 34 times faster than the
original one, respectively.

2.4 Verification/Refinement

Many systems contain one step that verifies and refines the
ROIs classified as pedestrians. The verification step filters
false positives, using criteria that do not overlap with the
classifier, while the refinement step performs a fine
segmentation of the pedestrian (not necessarily silhouette-
oriented) to provide an accurate distance estimation or to
support the subsequent tracking module.

2.4.1 Review

Gavrila et al. [55], [70] verify detections by performing cross
correlation between the left image of a stereo pair and the

isolated silhouette computed by the Chamfer system in the
right image. In [53], Franke and Gavrila suggest the analysis
of gait pattern of pedestrians crossing perpendicular to the
camera. The target must be tracked before applying this
method; thus, the order of verification/refinement and
tracking modules is interchanged for this particular
technique. Chamfer matching is used to both verify and
refine the found pedestrian shapes in [109].

In [97], Shashua et al. propose a multiframe approval
process that consists of validating the pedestrian-classified
ROIs by collecting information from several frames: gait
pattern, inward motion, confidence of the single-frame
classification, etc. In this case, verification follows tracking.

For refinement, one essential algorithm that provides one
detection per target is nonmaximum suppression. Assum-
ing that classifiers provide a peak at the correct position and
scale of the target and weaker responses around it, Dalal
[110] makes use of mean shift [111] to find the minimum set
of ROIs that best adjust to the pedestrians in the image. For
the sake of completeness, it is worth mentioning the work
by Agarwal et al. [112]. Their proposal, which was tested for
vehicle detection instead of pedestrian detection, consists of
two algorithms. The first creates an activation map, where
high-confidence detections mark their neighborhoods as
invalid for new detections. Given that this system is based
on a parts-based classifier, the second algorithm constrains
the parts to be assigned to only one detection, and thus,
nonmaximum detections are discarded by iteratively
decreasing their confidence.

In [39], by Broggi et al., the silhouette of the head and
shoulders that is matched during classification is taken as
a reference for refining detection down to the feet by using
the vertical edges computed for the symmetry detection.
The accurate location of the feet is then used to compute
the distance to pedestrians by assuming a planar road.
Then, stereoprocessing completes the refinement, by
correlating the left-image bounding box to certain posi-
tions of the right image.

Some techniques that utilize TIR images are 2D model
matching [20], 3D [42], [113] model matching, symmetry
[114], and a multiple filter approach, based on the area
overlap between positively classified ROIs and group
multiple detections in a single window [51].

2.4.2 Analysis

This module should be a complement to the classification
module. In fact, authors often refer to the described
techniques as a two detection process, in the sense that
verification algorithms are tied to the classification output,
i.e., to the characteristics of its false positives. For instance, a
classifier that fails to discard trees will not gain much
benefit from a verifier that just distinguishes vertical
regions in 3D. It is important to note that stereoinformation
tends to be used as long as the classification is based on a
2D image. In addition, it is reasonable to expect that as more
cues are used in verification, the results will be richer, e.g.,
stereoimaging may be combined with classification con-
fidence, symmetry, or gait. It should also be noted that the
use of verification after tracking presents an interesting
approach since, potentially, common movement-based
techniques (e.g., gait pattern analysis) used in surveillance
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can be applied. The disadvantage of this approach is that
this procedure is limited to walking pedestrians with clearly
visible legs. This restriction usually implies that the
pedestrian is close to the camera, which means that the
latency of the analysis is a very important issue.

The employed refinement methods are chosen according
to the utilized foreground segmentation technique and the
available information. Each of the methods presents
advantages and disadvantages. For instance, mean shift
has proven to be a reliable technique for full-scan proces-
sing, but has not been evaluated for other foreground
segmentation algorithms for which the ROI scan is not very
dense (e.g., road sampling or stereo). Distance estimations
from stereoimages, when available, are a good cue for
adjustment of the final ROI size, but the error increases with
the target distance. A study of the quality of the final
detections in terms of road plane adjustment (i.e., pedes-
trian distance), bounding box accuracy, etc., under a set of
different candidate generation schemes, refinement algo-
rithms, and cues (e.g., disparity, road plane adjustment, and
TIR symmetry) would be of great interest.

2.5 Tracking

The most evolved systems use a tracking module to follow
detected pedestrians over time. This step has several
purposes: avoiding false detections over time, predicting
future pedestrians positions, thus feeding the foreground
segmentation algorithm with precandidates, and, at a
higher level, making useful inferences about pedestrian
behavior (e.g., walking direction).

2.5.1 Review

Franke et al. propose the use of two Kalman filters [54],
[115], one controlling lateral motion (yaw rate of the own
vehicle is used) and the other controlling longitudinal
motion, to determine the speed and acceleration of detected
objects. Later, in [55], [70], authors from the same research
group used an �-� tracker (a simplified Kalman filter with
preestimated steady-state gains and a constant velocity
model) based on the bounding box representation from
their stereo verification phase. Three cues were used: the
euclidean distance between bounding box centroids, shape
dissimilarities (to avoid multiple tracks for single objects),
and the Chamfer distance (to avoid multiple objects
assigned to single tracks). Also, using Kalman filters as
tracking filters, Bertozzi et al. [41] use ROI overlapping to
merge tracks, Binelli et al. [116] enrich the predictions with
egomotion computed from velocity and yaw sensors, and
Grubb et al. [56], in addition to Kalman filtering, use
Bayesian probability to provide certainty, trajectory, and
speed of pedestrians over time.

Particle filters are also widely used in tracking. Giebel
et al. [117] use them to track multiple objects in 3D (in this
case, the cues are silhouette, texture, and stereo). Philomin
et al. [118] use the Condensation method [119] (a variant of
particle filters) to track silhouettes approximated by
B-Splines. Arndt et al. [120] employ particle filters in a
track-before-detect paradigm by coupling the tracking
algorithm to a cascade classifier [121]. The real-time GPU
implementation of particle filters by Mateo and Otsuka
[122] is also worth mentioning.

Recently, Leibe et al. [63] proposed the use of a color
model and what they refer to as the event cone, i.e., the
space-time volume in which the trajectory of a tracked
object is sought. The authors claim that, although this
proposal relies on the same equations as the Kalman filter, it
is superior to it in the sense that object state estimation can
be based on several previous steps and multiple trajectories
for the observed data can be evaluated.

Zhang et al. [123] propose the use of network flows to
optimize association of detections to tracks. A min-cost flow
algorithm is used to perform the detection-track associa-
tion, and an explicit occlusion model is used to control
long-term occlusions.

Research on detection in crowded scenarios has recently
led to coupled detection-tracking frameworks which share
information between both modules instead of treating them
as independent stages. Gammeter et al. [124] perform
multibody tracking by combining the implicit shape model
detector [103] and the stereo-odometry-based tracker of
[29]. Each trajectory is passed to a single-person articulated
tracker, which estimates the 3D pose and dynamics of each
individual. Adnriluka et al. [125] detect targets using a part-
based detector, and then use a Gaussian process latent
variable model to compute the temporal consistency of
detections over time. Finally, Singh et al. [126] use the
output from the part-based detector in [84] to initialize
tracklets (short track segments of high confidence detec-
tions) and residuals (low confidence detections). The
tracklet descriptors (based on color, motion, and 3D height)
and tracklet paths (using multiple hypotheses) are then
associated within a global optimization framework.

2.5.2 Analysis

Tracking represents an important aspect of transforming a
pedestrian detection algorithm into a PPS. However, this
module has not received as much attention as other
modules; each paper presents its own proposal and no
comparisons have been made. Hence, it is not easy to extract
conclusions. It can be said that the Kalman filter is by far the
most heavily utilized algorithm, but tracking cues range
from simple 2D ROI localization to color, silhouette, texture,
or 3D information. Recent coupled detection-tracking algo-
rithms represent a promising way to exploit richer tracking
cues, e.g., tracking independently detected body parts
instead of complete, rigid pedestrian silhouette models.

In our opinion, although there are many interesting
proposals, much work remains to be done in tracking
benchmarking (Section 3) before solid conclusions can be
reached on this topic.

2.6 Application

The last module of a PPS takes high-level decisions based
on the information from previous modules. This module
represents a complete area of research, which includes
psychological issues, human-machine interactions, and
many issues that are out of the scope of this survey. The
reader is referred to [129], [45], [130] for a description of
application modules in PPSs.

2.7 Sensors and Fusion

As previously stated, all of the reviewed techniques rely on
the output of cameras. They are the most widely used
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sensors, due to the high potential of visual features, high
spatial resolution, and richness of texture and color cues.
However, it was clear throughout the review that image
analysis is far from simple: cluttering and illumination,
among many other factors, affect the performance. Further-
more, the VS can be affected by glaring sources of light,
while TIR can be influenced by other hot objects (e.g.,
engines of other vehicles or light poles), changing weather
conditions (i.e., relative temperature changes), year/season,
etc., [131]. In fact, pedestrians could be warmer or colder
than the background, depending on such factors [132].

Fusion of VS/TIR sensors and active sensors, which are
used to obtain complementary information, is being
investigated in the context of on-board pedestrian detection.
The strengths and weaknesses of different kinds of sensors
can be complemented in order to improve the overall
system performance. Active sensors are based on technol-
ogies that emit signals and observe their reflection from the
objects in the environment, for example, radars emitting
radio waves or laser scanners emitting infrared light. In
general, these sensors are convenient for detecting objects
and providing superior range estimates out to larger
distances relative to passive sensors.

Next, we review some systems that implement sensor
fusion. Table 4 provides a summary of the most relevant
systems.

2.7.1 Review

Fardi et al. [133] combine a laser scanner with a TIR shape
extraction method to select ROIs, using Kalman filtering as
the data fusion algorithm. Premebida et al. [134] segment
and track clusters of points along the 1D laser scanner
dimension (note that tracking and segmentation are
performed together), while classification is performed
using data from the laser scanner (using a Gaussian
mixture to model clusters centroid, standard deviation,
radius, etc.) and the VS (using Haar wavelets and

AdaBoost). Milch and Behrens [135] make use of radar,

velocity, and steering sensors to generate hypotheses. They
then perform classification using a shape model for either

the VS or the TIR spectrum images. Linzmeier et al. [136]
also exploit radar, but combine it with thermopile, steering

angle, and ambient temperature sensors. In this case, fusion
can be done at a low level (ROI generation combining radar

and thermopile) and a high level (ROIs independently
generated by all the sensors).

Combining VS and TIR spectra from the two camera

types has also been proposed. In [137], by Bertozzi et al.,

v-disparity is computed using VS, and then, foreground
segmentation is carried out in both the VS and TIR (2D

area overlapping and 3D information are the fusion cues).
Finally, symmetry and template matching are used to

classify, verify, and refine final detections in the TIR.
Krotosky and Trivedi [57] evaluate tetra and tri-sensor

systems that utilize both the VS and TIR. For example, in
the tri-sensor approach, a VS stereo pair performs ROI

generation, while VS, TIR, and disparity-based HOG-like
features are fed to an SVM for classification.

One of the systems of the SAVE-U project [129] attaches a
radar sensor to the VS and TIR cameras. They implement

three different levels of fusion: sensor, low, and high level.
The first level is aimed at associating different radar

detections (each from an independent sensor) into unique
real objects, as well as establishing a correspondence

between the VS and TIR images. For low-level fusion, ROIs
are first detected in the VS by an algorithm based on

histogram edge orientations, then resized by radar data (i.e.,
they are adjusted to the ground by using the accurate radar

distance estimation), and finally, classified by NN-LRF
(Section 2.3). High-level fusion associates the radar and VS

information (distance and azimuth) of each object, and then,

tracks their trajectories.
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2.7.2 Analysis

Sensor fusion for ADAS is an open area of research, and
much work is still required before convincing results will
be achieved in real scenarios. The ideal combination of
sensors must be clarified, given that each sensor has its
own failure cases. For example, the conclusions of the
SAVE-U project [129] state that, although the radar-camera
combination worked well in simple test tracks, the radar
became unreliable at 10-15 m when working in real scenes
due to reflections from other objects (humans have low
reflectance). Laser scanners, which work with infrared
beams, are progressively gaining the interest of researchers
as they can detect pedestrians while providing accurate
distance estimates. However, laser scanners are affected by
adverse weather conditions just like cameras, which is not
the case for radar.

3 BENCHMARKING

In contrast to other areas, like face detection or document
analysis, pedestrian detection for ADAS lacks well-estab-
lished databases and benchmarking protocols. The absence
of realistic public databases and the difficulty of imple-
menting published techniques have usually led researchers
to evaluate new proposals with local private databases,
without any comparison to other state-of-the-art proposals.
Public databases are necessary for two reasons: 1) to
evaluate algorithms with different example sets, taken at
different places under different conditions, but specifically
from different research groups (which adds extra varia-
bility) and 2) to compare new algorithms with existing ones,
i.e., given that it is hard to reproduce algorithms, the easiest
way of establishing comparisons is to compare results from
the same databases following the same criteria.

3.1 Classification Benchmarking

At the moment, only two pedestrian databases specifically
built for ADAS are publicly available: the Daimler Chrysler
(DC) Pedestrian Classification Benchmark [87] and the
Computer Vision Center (CVC) Pedestrian Database [30].
They contain samples taken from moving vehicles in urban
scenarios, viewed from the same road plane (i.e., no large
camera tilts as in surveillance), under the typical ADAS
situations. DC features very low-resolution samples
(18� 36 pixels), while CVC samples maintain their original
image size (from 140� 280 to 12� 24 pixels).

Other, non-ADAS person databases can also be used as
long as the appearance of people is relevant to ADAS (i.e.,
seen from the same plane, standing, etc.). In this case, three
popular databases can be used: the MIT Pedestrian Data set
[32], which is almost perfectly classified in [31], and thus, is
outdated; the INRIA Person Data set [31], which is currently
quite popular for general human classification evaluation,
but contains a large number of samples taken from high-
resolution photographs; and the USC Pedestrian Detection
Test Set [84], which contains ADAS-like pedestrian samples,
divided into front/rear full view, front/rear partial interhu-
man occlusions, and front-/rear-/side-viewed pedestrians.

Table 5 summarizes these databases, and Fig. 9 illustrates
some positive samples. Note that the number of samples
refers to the annotated real pedestrian samples; this number

is often increased by mirroring or pixel-shifting the window
(e.g., in the DC database, where the final number of samples
is 24,000).

3.2 Evaluation Protocols

The simplest protocol for evaluating classifier performance
is to classify a set of samples other than the training ones,
called the testing set, and plot performance curves, e.g.,
receiver operating characteristic (ROC), detection-error
trade-off (DET), etc. We call this protocol the database-based
test, and is used in [31], [87], [30]. Another approach is to test
the classifier on full images, for instance, by classifying all of
the possible ROIs, and then plotting the same curves (e.g.,
precision-recall) according to some criterion that decides
whether a positive detection is correct or not, e.g., more than
50 percent overlap with an annotated pedestrian. This
approach is used in [110] and in the well-known PASCAL
Challenge;8 we call it the full-image-based test. The first
protocol is used to evaluate the classifier module, while the
second is more convenient for evaluating the overall system
results. Other performance measures consist of segmenta-
tion side accuracy and segmentation side efficiency, which
are used to evaluate detection in the TIR by using a full-
image-based approach [47], and trajectory/alarms, which
take into account the tracking and application modules [70].

Table 6 summarizes data on the performance of a few

systems. Columns 2-5 correspond to the parameters and

performance of the utilized classifiers, while 6-8 refer to

complete system results when available. Note that the

number of negative samples in every classifier varies; thus,

the rates of the false positives cannot be directly compared.

3.3 Future Needs

Although these two protocols are helpful as standard

benchmarking tools, there are still some measures that

require definition. For instance, there are no standard

methods for measuring cases of overlapping detections or

spurious false detections or for testing different methods of
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Views legend: F (front), S (side), and B (back).
3 http://www.science.uva.nl/research/isla/downloads/pedestrians.
4 http://www.cvc.uab.es/adas/databases.
5 http://cbcl.mit.edu/software-datasets.
6 http://lear.inrialpes.fr/data.
7 http://iris.usc.edu/Vision-Users/OldUsers/bowu/DatasetWebpage/
dataset.html.

8. http://pascallin.ecs.soton.ac.uk/challenges/VOC.



classifier ROI selection (i.e., full scan [31], PSC-based, or

more complex techniques [97]).
There is still room for improvement in the databases,

specifically with regard to the following aspects:

. Quantity. New improvements in face detection can

be evaluated using more than 20 databases, whereas
PPS can be tested on only five.

. Representivity. For instance, databases do not usually
contain images of children or very tall people, thus

leaving them out of typical PSC. However, it is clear

that children crossing the road (e.g., running behind a

ball) present a very plausible scenario.
. Variability. In addition to clothes, pose, and illumina-

tion, it would be interesting to increase the variability

in terms of height, distance, degree of occlusion, and

complexity of the background (here, virtual pedes-

trian synthesis [140] could be very helpful).

. Resolution. Some databases [31] contain well-fo-

cused images of pedestrians from a photographic

camera, which usually corresponds to targets close

to the vehicle in a PPS. Hence, it is difficult to

determine both the working distance of a given

classifier and whether the results can be extrapolated

to detect further targets, which tend to be blurred

and contained within a small number of pixels.

. Sensors. Until now, we have referred to visible

spectrum data sets, but if we look for a public TIR

ADAS-oriented database, we will not find one. To
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DR stands for detection rate, FPR stands for false positive rate. All of the systems use their own private benchmark databases.

Fig. 9. Some annotated pedestrian samples in two PPS databases (DC and CVC) and a general human detection database (INRIA). Image quality

and resolution of INRIA samples are clearly superior to samples in the other two databases.



the best of our knowledge, the OTCBVS9 [141] is the

only publicly available TIR database, but it is not

suited to ADAS benchmarking. The same issue

presents itself with active sensors, such as laser

scanner or radar.

Future challenges of PPSs not only require new public
databases, but complete annotated sequences, i.e., common
benchmarking protocols and databases must not be con-
strained to classification, but also extended to other
modules and whole systems. In this sense, we list some
guidelines for future database development that would be
of great interest to the community: full train and test
sequences (i.e., not only still images) for evaluating whole
systems; foreground segmentation ground truth (e.g., road
area or vertical candidate regions in 3D) would lead to
specific studies on this module; tracking ground truth is
useful for evaluating the proposed algorithms and features
for tracking; and especially, richer pedestrian annotation, in
terms of view or distance, to train and evaluate new object
classification paradigms, such as multiclass algorithms.

Two new databases that may address some of these
challenges are expected to be presented soon, according to
personal communication with the authors [142], [143].

4 DISCUSSION

A perfect on-board PPS must detect the presence of people in
the way of the vehicle and react according to the risk of
running over the pedestrian (warn the driver, brake the
vehicle, deploy external airbags, and perform an evasive
maneuver), without disturbing the driver if there is no risk at
all. Moreover, such a system should work well independent
of the time, road, and weather condition. Additionally, the
cost of the pedestrian detection module should be relatively
small compared to the total cost of the vehicle.

It is clear in the reviewed literature that, in the last
decade, an enormous research effort has been made in
automatic people detection. The scientific community has
made significant advances; however, at the same time, we
are not even halfway to an ideal PPS.

In order to illustrate this situation, we follow a line of
reasoning inspired by [9]. Let us take the classifier proposed
by Shashua et al. [97], which achieves a 95 percent detection
rate at a 10 percent false positive (FP) rate under realistic
PPS conditions (i.e., hard negative samples, not over the
whole image, and the smallest ROIs to classify are 12� 36
pixels). If we have 200,000 ROIs generated by an exhaustive
scan, this classifier will provide 20,000 FP/frame. If the
number of candidates is reduced to 1,000 per image by
using some foreground segmentation technique, the num-
ber of FP is reduced to 100. Moreover, the authors claim to
reduce this number to only 75 ROIs that need to be checked.
This number represents 7.5 FP per image, which corre-
sponds to 187.5 FP per second at 25 fps. A tracking module
could filter out detections to reduce the final number to
approximately 1 FP/s; however, even 1 FP/s (i.e., 60 FP/
minute) is not sufficient for a PPS.

In addition, we note that the work done up to now in
pedestrian detection covers only a subset of the possible

challenges. A few relevant questions that have to be
addressed are provided below.

. It is assumed that the full body of the pedestrian is
visible, even in part-based methods, given that they
need a reliable classification of parts. Handling
occlusions is a relevant issue (e.g., pedestrians can
suddenly appear from behind a parked vehicle) and
it is not clear how such methods work if the
pedestrian is only partially seen.

. Nighttime pedestrian detection has only barely been
addressed. The limited studies that have addressed
it did so in the context of the TIR spectrum.
Importantly, drivers need more help at nighttime
(poor illumination, contrast, color, etc.).

Once the main limitations of current proposals are
pointed out, we would like to share our point of view
regarding how to address such a challenge from the
computer vision side.

4.1 First Intermediate Useful Challenge

The pursuit of a perfect PPS must be considered a long-term
goal. The development of a PPS that works under restricted
conditions is already useful. For instance, a system that
works only in daytime, under good weather conditions (no
heavy rain/snow/fog), over a range of distances up to 50 m
is, from our viewpoint, the first intermediate challenge for
the community. According to [144], these conditions
represent a very relevant scenario in accidents.

4.2 Imaging Technology

According to the reviewed literature, the most promising
option is pedestrian detection based on stereo rigs with
HDR cameras, given the ability of modern stereo techniques
to provide useful 3D information out to about 50 m and the
ability of HDR to provide well-contrasted NIR images.

Although TIR images have been quite popular during
recent years for nighttime scenarios, it is unclear whether
this technology will ultimately be chosen for serial produc-
tion. Unfortunately, such cameras are quite expensive, have
low resolution, are more difficult to integrate since they
cannot see through windshields, and are not producing
quite convincing results. In our opinion, although TIR-
based research is interesting, we think that NIR sensors
deserve more attention, given the following points: First,
modern headlight systems cover the visible near infrared
ranges of the spectrum and they have new motion
capabilities, thus providing better visibility than standard
low beams [145]. Second, NIR images are quite similar to VS
images, and so daytime systems can be more easily adapted
to NIR imagery than to TIR imagery. Third, there are other
ADAS applications like lane departure warning or traffic sign
recognition for which TIR imagery does not seem appro-
priate, in contrast to NIR. Therefore, in order to cover such
applications along pedestrian detection, both spectra are
needed even if we rely on TIR for the latter task.

4.3 Improving Overall System Performance

We refer to both real-time reactions as well as to detection
rate versus false alarms. Although it is clear that any
improvement in the individual modules should result in
better system performance, one can see that most of the
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research has been focused on the object classification task,
specifically focused on detection performance. Researchers
have tried to improve features and learning machines by
increasing their discrimination power or lowering their
computation time. Going forward with this research is fully
justified. We would like to offer a few suggestions:

. Multiclass approaches should be incorporated, not
only to consider different pedestrian models, but
also to check for other targets (e.g., vehicles) and
increase the robustness of the system.

. It may be interesting to see if 3D measures can be
used with 2D information to improve classifiers.

. Given that pedestrians closer to the camera are seen
with more detail than ones farther away, a study on
the benefits of training different classifier models
depending on the target distance would be of interest.

. Finally, research into part-based methods, in addi-
tion to the benefits when dealing with pose
variability, must also focus on partially occluded
pedestrians. This amendment would result in PPSs
with lower detection latency in some critical cases.

Despite the potential improvements in detection, it is
unrealistic to think of a perfect classification module. After
all, the goal is to have neither misdetections nor false alarms
at the system level. Therefore, we should think of how all
modules can contribute to these goals.

The high relevance of foreground segmentation must be
stressed, either as an isolated module or integrated with the
classification module. The benefits are twofold: 1) Given
that classification tends to be the most time-consuming task,
reduction of the image area to be processed also reduces the
overall system time; 2) by submitting fewer background
regions for classification, the rate of false alarms can also be
reduced while the same detection rate is maintained. In
addition, this module can also be useful for selecting
complex negative examples, instead of the typical random
ones. Therefore, the learning machine could concentrate on
discriminating complex foreground from pedestrians while
avoiding background, and the associated performance
curves would be more significant and realistic. Finally, we
must point out that, although 3D information is our
preferred approach, fusion with 2D preattentive cues and
context can conveniently produce gains in robustness.

The need to deal with egomotion in outdoor scenarios
and with a changing background is probably the reason
why tracking for PPS has not received as much attention as
in other applications, like surveillance. However, this
module has considerable potential to improve the overall
system performance. Final classification based on several
frames is more robust than classification based on a single
frame since additional features can be collected [79] along
the temporal axis and temporal coherence analysis can be
performed, etc. As an example, since distant pedestrians
appear smaller in the image, they tend to be more difficult
to classify; hence, a track-before-detect strategy can be
reliable. For closer targets, the latency of the system must be
lower, so a detect-before-track strategy is expected. For-
tunately, closer targets present more detail, and classifica-
tion is easier. In addition, future work should make use of
the aforementioned information obtained from the vehicle
(e.g., speed and yaw rate) and image stabilization obtained
by several techniques [24], [26].

Throughout this review, we have shown that active
sensors (e.g., radar and laser scanner) are a good solution to
the problem of obtaining 3D information in real time, i.e.,
for performing foreground segmentation. As an example, a
laser scanner with an HDR camera seems to be a
straightforward option for performing ROI generation and
classification. The challenge for the computer vision
community is to develop a system that is able to beat active
sensors-based setups, especially since computer vision
techniques are cheaper to maintain than active sensors.
For instance, a setup using a stereo rig based on HDR
cameras could provide reliable foreground segmentation
and classification during both the day and night.

In addition to the aforementioned ways of improving
PPSs, a complementary strategy actually under investiga-
tion [146] is the concept of driver in the loop, i.e., taking into
account the driver state. Since the aim of a PPS is to assist the
driver, not to substitute for them, it is not necessary to
bother the driver with information if they are clearly paying
attention to the road. On the contrary, the PPS can warn the
driver about risky pedestrians on road areas that they are
not monitoring (e.g., pedestrians suddenly appearing from
a lateral direction). However, more research into driver
monitoring (e.g., developing databases of synchronized
driver and outdoor images) and psychological aspects (i.e.,
the danger of drivers intentionally paying less attention due
to the PPS) is required.

5 CONCLUSION

Intelligent vehicles represent a key technology for reducing
the number of accidents between pedestrians and vehicles.
Given the difficulties that such systems must overcome, i.e.,
real-time detection of changing targets in uncontrolled
outdoor scenarios, pedestrian protection is by no means an
easy task. Consequently, a plethora of research papers
addressing the challenge have been presented during the
last decade. We have reached a point where a state-of-the-
art review can be of great help to summarize all of the work
done to this point.

In this paper, we have presented a survey that does not
follow the typical one-by-one paper review. We think that
following such a strategy would obfuscate the similarities
and differences between proposals when addressing specific
aspects of the challenge. Instead, we have cast the pedestrian
detection challenge as a task composed of subtasks, and
proposed an architecture of logic modules, each with
attached responsibilities. In our opinion, such a reviewing
strategy more clearly presents the state of the art from the
point of view of the community, especially work from novel
researchers in the area. Accordingly, we have reviewed and
analyzed the literature while trying to explicitly elucidate
how the different subtasks are addressed in each work.
Specifically, 108 papers published between 1996 and 2008
(16 from 2008) have been reviewed. Moreover, we have
included a discussion section, where we presented our
viewpoint of the pedestrian detection field, given the
reviewed papers as well as our own experience, and pointed
out current weaknesses and possible future trends.

The primary conclusion is that in the last decade, there
has been an enormous research effort in automatic people
detection. However, the feeling is that we are still far from
developing an ideal system. It is clear that major progress
has been made in pedestrian classification, mainly due to
synergy with generic object detection and applications such
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as face detection and surveillance. However, there is still
work to do before a useful performance level is achieved
and protection systems can be installed in a serial car. We
have argued that such a responsibility must be shared
between tasks like foreground segmentation and tracking.
We have emphasized a short-term need for realistic and
public databases in order to standardize performance
evaluation. Altogether we are optimistic about future
achievements in this field of research.
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Vision-Based Human Motion Capture and Analysis,” Computer
Vision and Image Understanding, vol. 104, nos. 2/3, pp. 90-126, 2006.

[8] D. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien, and D. Ramanan,
Computational Studies of Human Motion: Part 1, Tracking and Motion
Synthesis. Now publishers, 2005.

[9] D. Gavrila, “Sensor-Based Pedestrian Protection,” IEEE Intelligent
Systems, vol. 16, no. 6, pp. 77-81, Nov./Dec. 2001.

[10] T. Gandhi and M.M. Trivedi, “Pedestrian Collision Avoidance
Systems: A Survey of Computer Vision Based Recent Studies,”
Proc. IEEE Int’l Conf. Intelligent Transportation Systems, pp. 976-981,
2006.

[11] T. Gandhi and M.M. Trived, “Pedestrian Protection Systems:
Issues, Survey, and Challenges,” IEEE Trans. Intelligent Transporta-
tion Systems, vol. 8, no. 3, pp. 413-430, Sept. 2007.

[12] M.-H. Yang, D.J. Kriegman, and N. Ahuja, “Detecting Faces in
Images: A Survey,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 1, pp. 34-58, Jan. 2002.

[13] Z. Sun, G. Bebis, and R. Miller, “On-Road Vehicle Detection: A
Review,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 5, pp. 694-711, May 2006.
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