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Vision meets Robotics: The KITTI Dataset
Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel Urtasun

Abstract—We present a novel dataset captured from a VW
station wagon for use in mobile robotics and autonomous driving
research. In total, we recorded 6 hours of traffic scenarios at
10-100 Hz using a variety of sensor modalities such as high-
resolution color and grayscale stereo cameras, a Velodyne 3D
laser scanner and a high-precision GPS/IMU inertial navigation
system. The scenarios are diverse, capturing real-world traffic
situations and range from freeways over rural areas to inner-
city scenes with many static and dynamic objects. Our data is
calibrated, synchronized and timestamped, and we provide the
rectified and raw image sequences. Our dataset also contains
object labels in the form of 3D tracklets and we provide online
benchmarks for stereo, optical flow, object detection and other
tasks. This paper describes our recording platform, the data
format and the utilities that we provide.

Index Terms—dataset, autonomous driving, mobile robotics,
field robotics, computer vision, cameras, laser, GPS, benchmarks,
stereo, optical flow, SLAM, object detection, tracking, KITTI

I. INTRODUCTION

The KITTI dataset has been recorded from a moving plat-
form (Fig. 1) while driving in and around Karlsruhe, Germany
(Fig. 2). It includes camera images, laser scans, high-precision
GPS measurements and IMU accelerations from a combined
GPS/IMU system. The main purpose of this dataset is to
push forward the development of computer vision and robotic
algorithms targeted to autonomous driving [1]–[7]. While our
introductory paper [8] mainly focuses on the benchmarks,
their creation and use for evaluating state-of-the-art computer
vision methods, here we complement this information by
providing technical details on the raw data itself. We give
precise instructions on how to access the data and comment
on sensor limitations and common pitfalls. The dataset can
be downloaded from http://www.cvlibs.net/datasets/kitti. For
a review on related work, we refer the reader to [8].

II. SENSOR SETUP

Our sensor setup is illustrated in Fig. 3:
• 2 × PointGray Flea2 grayscale cameras (FL2-14S3M-C),

1.4 Megapixels, 1/2” Sony ICX267 CCD, global shutter
• 2 × PointGray Flea2 color cameras (FL2-14S3C-C), 1.4

Megapixels, 1/2” Sony ICX267 CCD, global shutter
• 4 × Edmund Optics lenses, 4mm, opening angle ∼ 90◦,

vertical opening angle of region of interest (ROI) ∼ 35◦

• 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz,
64 beams, 0.09 degree angular resolution, 2 cm distance
accuracy, collecting ∼ 1.3 million points/second, field of
view: 360◦ horizontal, 26.8◦ vertical, range: 120 m
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Fig. 1. Recording Platform. Our VW Passat station wagon is equipped
with four video cameras (two color and two grayscale cameras), a rotating
3D laser scanner and a combined GPS/IMU inertial navigation system.

• 1 × OXTS RT3003 inertial and GPS navigation system,
6 axis, 100 Hz, L1/L2 RTK, resolution: 0.02m / 0.1◦

Note that the color cameras lack in terms of resolution due
to the Bayer pattern interpolation process and are less sensitive
to light. This is the reason why we use two stereo camera
rigs, one for grayscale and one for color. The baseline of
both stereo camera rigs is approximately 54 cm. The trunk
of our vehicle houses a PC with two six-core Intel XEON
X5650 processors and a shock-absorbed RAID 5 hard disk
storage with a capacity of 4 Terabytes. Our computer runs
Ubuntu Linux (64 bit) and a real-time database [9] to store
the incoming data streams.

III. DATASET

The raw data described in this paper can be accessed from
http://www.cvlibs.net/datasets/kitti and contains ∼ 25% of our
overall recordings. The reason for this is that primarily data
with 3D tracklet annotations has been put online, though we
will make more data available upon request. Furthermore, we
have removed all sequences which are part of our benchmark
test sets. The raw data set is divided into the categories ’Road’,
’City’, ’Residential’, ’Campus’ and ’Person’. Example frames
are illustrated in Fig. 5. For each sequence, we provide the raw
data, object annotations in form of 3D bounding box tracklets
and a calibration file, as illustrated in Fig. 4. Our recordings
have taken place on the 26th, 28th, 29th, 30th of September
and on the 3rd of October 2011 during daytime. The total size
of the provided data is 180 GB.

http://www.cvlibs.net/datasets/kitti
http://www.cvlibs.net/datasets/kitti
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Fig. 2. Recording Zone. This figure shows the GPS traces of our recordings
in the metropolitan area of Karlsruhe, Germany. Colors encode the GPS signal
quality: Red tracks have been recorded with highest precision using RTK
corrections, blue denotes the absence of correction signals. The black runs
have been excluded from our data set as no GPS signal has been available.

A. Data Description

All sensor readings of a sequence are zipped into a single
file named date_drive.zip, where date and drive are
placeholders for the recording date and the sequence number.
The directory structure is shown in Fig. 4. Besides the raw
recordings (’raw data’), we also provide post-processed data
(’synced data’), i.e., rectified and synchronized video streams,
on the dataset website.

Timestamps are stored in timestamps.txt and per-
frame sensor readings are provided in the corresponding data
sub-folders. Each line in timestamps.txt is composed
of the date and time in hours, minutes and seconds. As the
Velodyne laser scanner has a ’rolling shutter’, three timestamp
files are provided for this sensor, one for the start position
(timestamps_start.txt) of a spin, one for the end
position (timestamps_end.txt) of a spin, and one for the
time, where the laser scanner is facing forward and triggering
the cameras (timestamps.txt). The data format in which
each sensor stream is stored is as follows:

a) Images: Both, color and grayscale images are stored
with loss-less compression using 8-bit PNG files. The engine
hood and the sky region have been cropped. To simplify
working with the data, we also provide rectified images. The
size of the images after rectification depends on the calibration
parameters and is ∼ 0.5 Mpx on average. The original images
before rectification are available as well.

b) OXTS (GPS/IMU): For each frame, we store 30 differ-
ent GPS/IMU values in a text file: The geographic coordinates
including altitude, global orientation, velocities, accelerations,
angular rates, accuracies and satellite information. Accelera-
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Fig. 3. Sensor Setup. This figure illustrates the dimensions and mounting
positions of the sensors (red) with respect to the vehicle body. Heights above
ground are marked in green and measured with respect to the road surface.
Transformations between sensors are shown in blue.
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Fig. 4. Structure of the provided Zip-Files and their location within a
global file structure that stores all KITTI sequences. Here, ’date’ and ’drive’
are placeholders, and ’image 0x’ refers to the 4 video camera streams.

tions and angular rates are both specified using two coordinate
systems, one which is attached to the vehicle body (x, y, z) and
one that is mapped to the tangent plane of the earth surface
at that location (f, l, u). From time to time we encountered
short (∼ 1 second) communication outages with the OXTS
device for which we interpolated all values linearly and set
the last 3 entries to ’-1’ to indicate the missing information.
More details are provided in dataformat.txt. Conversion
utilities are provided in the development kit.

c) Velodyne: For efficiency, the Velodyne scans are
stored as floating point binaries that are easy to parse using
the C++ or MATLAB code provided. Each point is stored with
its (x, y, z) coordinate and an additional reflectance value (r).
While the number of points per scan is not constant, on average
each file/frame has a size of ∼ 1.9 MB which corresponds
to ∼ 120, 000 3D points and reflectance values. Note that the
Velodyne laser scanner rotates continuously around its vertical
axis (counter-clockwise), which can be taken into account
using the timestamp files.

B. Annotations

For each dynamic object within the reference camera’s field
of view, we provide annotations in the form of 3D bounding
box tracklets, represented in Velodyne coordinates. We define
the classes ’Car’, ’Van’, ’Truck’, ’Pedestrian’, ’Person (sit-
ting)’, ’Cyclist’, ’Tram’ and ’Misc’ (e.g., Trailers, Segways).
The tracklets are stored in date_drive_tracklets.xml.
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Fig. 6. Development kit. Working with tracklets (top), Velodyne point clouds
(bottom) and their projections onto the image plane is demonstrated in the
MATLAB development kit which is available from the KITTI website.

Each object is assigned a class and its 3D size (height, width,
length). For each frame, we provide the object’s translation
and rotation in 3D, as illustrated in Fig. 7. Note that we
only provide the yaw angle, while the other two angles
are assumed to be close to zero. Furthermore, the level of
occlusion and truncation is specified. The development kit
contains C++/MATLAB code for reading and writing tracklets
using the boost::serialization1 library.

To give further insights into the properties of our dataset,
we provide statistics for all sequences that contain annotated
objects. The total number of objects and the object orientations
for the two predominant classes ’Car’ and ’Pedestrian’ are
shown in Fig. 8. For each object class, the number of object
labels per image and the length of the captured sequences is
shown in Fig. 9. The egomotion of our platform recorded by
the GPS/IMU system as well as statistics about the sequence
length and the number of objects are shown in Fig. 10 for the
whole dataset and in Fig. 11 per street category.

C. Development Kit

The raw data development kit provided on the KITTI
website2 contains MATLAB demonstration code with C++
wrappers and a readme.txt file which gives further
details. Here, we will briefly discuss the most impor-
tant features. Before running the scripts, the mex wrapper
readTrackletsMex.cpp for reading tracklets into MAT-
LAB structures and cell arrays needs to be built using the
script make.m. It wraps the file tracklets.h from the

1http://www.boost.org
2http://www.cvlibs.net/datasets/kitti/raw data.php
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Fig. 7. Object Coordinates. This figure illustrates the coordinate system
of the annotated 3D bounding boxes with respect to the coordinate system of
the 3D Velodyne laser scanner. In z-direction, the object coordinate system is
located at the bottom of the object (contact point with the supporting surface).

cpp folder which holds the tracklet object for serialization.
This file can also be directly interfaced with when working in
a C++ environment.

The script run_demoTracklets.m demonstrates how
3D bounding box tracklets can be read from the XML files
and projected onto the image plane of the cameras. The
projection of 3D Velodyne point clouds into the image plane
is demonstrated in run_demoVelodyne.m. See Fig. 6 for
an illustration.

The script run_demoVehiclePath.m shows how to
read and display the 3D vehicle trajectory using the GPS/IMU
data. It makes use of convertOxtsToPose(), which takes
as input GPS/IMU measurements and outputs the 6D pose of
the vehicle in Euclidean space. For this conversion we make
use of the Mercator projection [10]

x = s× r × π lon

180
(1)

y = s× r × log

(
tan

(
π(90 + lat)

360

))
(2)

with earth radius r ≈ 6378137 meters, scale s = cos
(
lat0×π
180

)
,

and (lat, lon) the geographic coordinates. lat0 denotes the lat-
itude of the first frame’s coordinates and uniquely determines
the Mercator scale.

The function loadCalibrationCamToCam() can be
used to read the intrinsic and extrinsic calibration parameters
of the four video sensors. The other 3D rigid body transfor-
mations can be parsed with loadCalibrationRigid().

D. Benchmarks

In addition to the raw data, our KITTI website hosts
evaluation benchmarks for several computer vision and robotic
tasks such as stereo, optical flow, visual odometry, SLAM, 3D
object detection and 3D object tracking. For details about the
benchmarks and evaluation metrics we refer the reader to [8].

IV. SENSOR CALIBRATION

We took care that all sensors are carefully synchronized
and calibrated. To avoid drift over time, we calibrated the
sensors every day after our recordings. Note that even though
the sensor setup hasn’t been altered in between, numerical
differences are possible. The coordinate systems are defined
as illustrated in Fig. 1 and Fig. 3, i.e.:
• Camera: x = right, y = down, z = forward
• Velodyne: x = forward, y = left, z = up

http://www.cvlibs.net/datasets/kitti/raw_data.php
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City Residential Road Campus Person
Fig. 5. Examples from the KITTI dataset. This figure demonstrates the diversity in our dataset. The left color camera image is shown.

• GPS/IMU: x = forward, y = left, z = up
Notation: In the following, we write scalars in lower-case

letters (a), vectors in bold lower-case (a) and matrices using
bold-face capitals (A). 3D rigid-body transformations which
take points from coordinate system a to coordinate system b
will be denoted by Tb

a, with T for ’transformation’.

A. Synchronization

In order to synchronize the sensors, we use the timestamps
of the Velodyne 3D laser scanner as a reference and consider
each spin as a frame. We mounted a reed contact at the bottom
of the continuously rotating scanner, triggering the cameras
when facing forward. This minimizes the differences in the
range and image observations caused by dynamic objects.
Unfortunately, the GPS/IMU system cannot be synchronized
that way. Instead, as it provides updates at 100 Hz, we
collect the information with the closest timestamp to the laser
scanner timestamp for a particular frame, resulting in a worst-
case time difference of 5 ms between a GPS/IMU and a
camera/Velodyne data package. Note that all timestamps are
provided such that positioning information at any time can be
easily obtained via interpolation. All timestamps have been
recorded on our host computer using the system clock.

B. Camera Calibration

For calibrating the cameras intrinsically and extrinsically,
we use the approach proposed in [11]. Note that all camera
centers are aligned, i.e., they lie on the same x/y-plane. This
is important as it allows us to rectify all images jointly.

The calibration parameters for each day are stored in
row-major order in calib_cam_to_cam.txt using the
following notation:

• s(i) ∈ N2 . . . . . . . . . . . . original image size (1392× 512)
• K(i) ∈ R3×3 . . . . . . . . . calibration matrices (unrectified)
• d(i) ∈ R5 . . . . . . . . . . distortion coefficients (unrectified)
• R(i) ∈ R3×3 . . . . . . rotation from camera 0 to camera i
• t(i) ∈ R1×3 . . . . . translation from camera 0 to camera i
• s

(i)
rect ∈ N2 . . . . . . . . . . . . . . . image size after rectification

• R
(i)
rect ∈ R3×3 . . . . . . . . . . . . . . . rectifying rotation matrix

• P
(i)
rect ∈ R3×4 . . . . . . projection matrix after rectification

Here, i ∈ {0, 1, 2, 3} is the camera index, where 0 represents
the left grayscale, 1 the right grayscale, 2 the left color and
3 the right color camera. Note that the variable definitions
are compliant with the OpenCV library, which we used for
warping the images. When working with the synchronized
and rectified datasets only the variables with rect-subscript are
relevant. Note that due to the pincushion distortion effect the
images have been cropped such that the size of the rectified
images is smaller than the original size of 1392× 512 pixels.

The projection of a 3D point x = (x, y, z, 1)T in rectified
(rotated) camera coordinates to a point y = (u, v, 1)T in the
i’th camera image is given as

y = P
(i)
rect x (3)
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with

P
(i)
rect =

f (i)u 0 c
(i)
u −f (i)u b

(i)
x

0 f
(i)
v c

(i)
v 0

0 0 1 0

 (4)

the i’th projection matrix. Here, b(i)x denotes the baseline (in
meters) with respect to reference camera 0. Note that in order
to project a 3D point x in reference camera coordinates to a
point y on the i’th image plane, the rectifying rotation matrix
of the reference camera R

(0)
rect must be considered as well:

y = P
(i)
rect R

(0)
rect x (5)

Here, R(0)
rect has been expanded into a 4×4 matrix by append-

ing a fourth zero-row and column, and setting R
(0)
rect(4, 4) = 1.

C. Velodyne and IMU Calibration

We have registered the Velodyne laser scanner with respect
to the reference camera coordinate system (camera 0) by
initializing the rigid body transformation using [11]. Next, we
optimized an error criterion based on the Euclidean distance of
50 manually selected correspondences and a robust measure on
the disparity error with respect to the 3 top performing stereo
methods in the KITTI stereo benchmark [8]. The optimization
was carried out using Metropolis-Hastings sampling.

The rigid body transformation from Velodyne coordinates to
camera coordinates is given in calib_velo_to_cam.txt:

• Rcam
velo ∈ R3×3 . . . . rotation matrix: velodyne → camera

• tcamvelo ∈ R1×3 . . . translation vector: velodyne → camera

Using

Tcam
velo =

(
Rcam
velo tcamvelo
0 1

)
(6)

a 3D point x in Velodyne coordinates gets projected to a point
y in the i’th camera image as

y = P
(i)
rect R

(0)
rect T

cam
velo x (7)

For registering the IMU/GPS with respect to the Velodyne
laser scanner, we first recorded a sequence with an ’∞’-loop
and registered the (untwisted) point clouds using the Point-
to-Plane ICP algorithm. Given two trajectories this problem
corresponds to the well-known hand-eye calibration problem
which can be solved using standard tools [12]. The rotation
matrix Rvelo

imu and the translation vector tveloimu are stored in
calib_imu_to_velo.txt. A 3D point x in IMU/GPS
coordinates gets projected to a point y in the i’th image as

y = P
(i)
rect R

(0)
rect T

cam
velo Tvelo

imu x (8)

V. SUMMARY AND FUTURE WORK

In this paper, we have presented a calibrated, synchronized
and rectified autonomous driving dataset capturing a wide
range of interesting scenarios. We believe that this dataset
will be highly useful in many areas of robotics and com-
puter vision. In the future we plan on expanding the set of
available sequences by adding additional 3D object labels for
currently unlabeled sequences and recording new sequences,
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Fig. 8. Object Occurrence and Orientation Statistics of our Dataset.
This figure shows the different types of objects occurring in our sequences
(top) and the orientation histograms (bottom) for the two most predominant
categories ’Car’ and ’Pedestrian’.

for example in difficult lighting situations such as at night, in
tunnels, or in the presence of fog or rain. Furthermore, we
plan on extending our benchmark suite by novel challenges.
In particular, we will provide pixel-accurate semantic labels
for many of the sequences.
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Fig. 9. Number of Object Labels per Class and Image. This figure shows how often an object occurs in an image. Since our labeling efforts focused on
cars and pedestrians, these are the most predominant classes here.
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Fig. 11. Velocities, Accelerations and Number of Objects per Object Class. For each scene category we show the acceleration and velocity of the mobile
platform as well as the number of labels and objects per class. Note that sequences with a purely static observer have been excluded from the velocity and
acceleration histograms as they don’t represent natural driving behavior. The category ’Person’ has been recorded from a static observer.
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