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Abstract—Marking-based lane recognition requires an unob-
structed view onto the road. In practice however, heavy traffic
often constrains the visual field, especially in urban scenarios
such as urban crossroads.

In this paper we present a novel approach to road mosaicing
for dynamic environments. Our method is based on a multistage
registration procedure and uses blending techniques. We show
that under modest assumptions accurate registration is possible
from monocular image sequences. We further demonstrate that
fusing visual information from previous frames into the current
view can greatly extend the camera’s field of view.

I. INTRODUCTION

Intelligent vehicles require a good view onto the road when

visual positioning according to lane markers is required [1],

[2]. Often however, the field of view is strongly limited. This

is because traffic signs, other traffic participants or buildings

frequently occlude large parts of the road, as illustrated in

figure 1 and 2. Treating occlusions as noise can lead to

unsatisfying results in such situations.

We tackle this problem by making use of the parallax

effect – the apparent displacement of an object viewed along

two different lines of sight. Knowing the ego-position and -

orientation of the vehicle and identifying a light ray as coming

from a particular point on the road allows for incrementally

generating a virtual map of the road.1 This map can be used

to reconstruct parts of the road which become occluded in

future image frames. Figure 1 shows this idea. While at frame

t + 1 the view of the ego-vehicle is partly barred by the

other car, the occluded part of the road is visible at frame

t due to the relative displacement of object and camera. In

order to remove artificial edge artifacts from the mosaic we

use blending techniques which are a well-studied tool in the

computer graphics community.

In recent years ego-positioning and mapping experienced

a lot of attention [3]–[7]. Recent advances have shown that

even long distances can be robustly mapped by mobile robots

[8]. Many of the techniques, however, use stereo-information,

landmark points, additional sensor types and/or assume static

scenes. Our method also differs from traditional stitching

techniques [9], [10] since we have to deal with low resolution

in far field due to the tilted and low camera position with

respect to the road.

The method described in this paper solely uses information

from a monocular grayscale camera, thus supporting a cheap

1We call this map virtual, since we are only interested in the correct pose
parameters. The target surface to project on can be either a bird’s eye view
(figure 2(b)) or a single camera view (figure 2(c)).

Fig. 1. The parallax effect. Combining information from previous frames
with the current view increases the visual field with respect to the road.

and easy application in automotive systems. Since we work

with monocular images only, ego-positioning is challenging

and we have to make assumptions about the environment

which are summarized as follows:

• An estimate of the camera intrinsics (focal length, prin-

cipal point, distortion) and extrinsics (camera height,

inclination) is given.

• The road surface to be considered can be approximated

by a plane and offers enough texture (i.e. road markings)

for the registration process.

Note that the first assumption is valid for all calibrated

camera setups and the second assumption holds for a large

number of interesting inner-city scenarios.

The remainder of this paper is structured as follows: First

we show how representative frames can be found in the image

sequence. Then our four-stage registration process is described

followed by a description of the image-blending techniques we

use. Finally the paper is concluded with an outlook on future

work.

II. PARAMETER INITIALIZATION

A. Geometrical scene description

Approximating the road surface by a plane enables us to

describe the perspective mapping from one image plane to

another image plane and from image planes to the road via

homographies [11]

pj ≃ Hpi



(a) First frame (bird’s eye view) (b) Mosaicing result (c) Overlay (best viewed in color)

Fig. 2. Comparison of single image road-views with road mosaics. Figure 2(a) shows a bird’s eye perspective of the road when projecting the current
camera image only. Figure 2(b) shows the mosaicing result of our algorithm with the visually estimated ego-position of the camera for 10 keyframes. The
images are combined in a way that removes spurious obstacles from the road and leads to a better overlook. Figure 2(c) shows an artificial overlay (red) of
a single frame with the mosaicing result computed only from previous frames (gray values).

where pi is a homogeneous point lying on plane i and H is a

3 × 3-matrix describing the projection from plane i to plane

j. Here ≃ denotes that the equation is defined up to a scale

factor.

In theory the 8 homography parameters could be estimated

from frame to frame using standard techniques like DLT2.

However we do not know which of the correspondences

between two subsequent frames actually lie on the road. Fur-

thermore small registration errors would accumulate quickly

[3], [7], leading to bad results when projecting points along

the ” homography chain”.

Thus we decided to use a direct parameterization scheme

which further features interpretable parameters in contrast to

elementwise homography parameterization. This also allows

for putting priors on the parameters in order to perform tem-

poral integration and improve the optimization result. Figure

3 shows the transformation matrices Trr which project from

road to road, Trc which project from road to camera, K which

project from camera to the image plane and Tii which project

from image to image. Due to the planarity assumption all

projections can be expressed as 3 × 3 homography matrices.

Transforming a point from one coordinate system into the

other is easily expressed via concatenations and inversions of

these matrices. The individual mappings are parameterized as

K(f, c) =







fx 0 cx

0 fy cy

0 0 1







Trc(h, θ, φ) =







cosφ − sinφ cos θ − sinφ sin θh

sinφ cosφ cos θ cosφ sin θh

0 sin θ − cos θh







2Direct Linear Transform [11].

Fig. 3. Geometrical description of the scene. This figure shows the
transformations we use for projecting between different coordinate systems.
The colored boxes denote associate sections in this paper.

Trr(α, t) =







cosα − sinα t1

sinα cosα t2

0 0 1







where f,c are the camera intrinsics, h is the camera height,

t represents the camera translation over ground and φ,θ,α

stands for roll, pitch and yaw. While the calibration matrix

K is assumed constant over time, Trc and Trr vary. The

goal in registration is now to estimate the parameter set Θ =
(f, c, [h1, θ1, φ1]...[hN , θN , φN ], [α1, t1], ..., [αN−1, tN−1])
which relates N keyframes to each other.

B. Keyframes and keyfeatures

Since we can not make use of landmark points, accumu-

lation of errors is a severe problem averting the use of all

frames for registration. By picking only a subset as keyframes

we also save computational power because optimizing for the

parameters is done in a lower-dimensional space. Thus we



(a) Harris corner tracking (b) Snakes over time

Fig. 4. Tracking Harris corners. Figure 4(a) depicts two Harris corner tracks
between two consecutive keyframes in the image (top) and road (bottom)

coordinate system. Sustaining tracks are shown over time in figure 4(b).
The green tracks are selected as keyfeatures for parameter initialization as
described in section III-A. Keyframes are indicated by blue vertical bars.

search for the smallest set of keyframes which still allows for

accurate registration.

To do so we first track Harris corners [12], [13] over the

sequence using template matching via cross-correlation. New

”tracks” are initialized at points distant from existing active

tracks. Tracks end when the cross-correlation value falls below

a threshold τ or simple smoothness or geometrical constraints

are violated. Figure 4 depicts this process.

As mentioned earlier, we are interested in a small set of

representative keyframes with a large number of tracks which

connect two consecutive keyframes. Furthermore we want the

keyframes to be uniformly distributed. In other words we wish

to minimize

Ekey = aN − b

N−1
∑

i=1

ti+1
i ψ(Ci+1

i ) + c

N−1
∑

i=1

|ti+1
i − tN1

N
| (1)

with respect to the number of keyframes N . Here t
j
i denotes

the time between keyframe i and keyframe j, Ci+1
i is the

number of tracks connecting keyframe i and keyframe i +
1 and ψ stands for the logistic function. In our experiments

we set a = b = c = 1 and choose the logistic parameters

such that 4-5 connections between consecutive keyframes are

considered sufficient. Because minimization of equation 1 with

respect to N leads to exponential complexity we approximate

the solution by a simple greedy algorithm: We initialize the

set of keyframes to the set of all frames and remove the frame

with the highest gain in Ekey until no further improvement

is possible. A typical solution of this algorithm is shown in

figure 4(b).

Reliable Ego-pose initialization further requires selecting

a subset of tracks connecting pairs of keyframes which lie

on or close to the road. To achieve this we project feature

candidates onto the road3 via pj
r = T−1

rc K−1p
j
i for each pair of

consecutive keyframes j,j+1. Since distances on the road are

invariant under global rotation and translation we select those

features as keyfeatures which exhibit the smallest change in

3Here the a-prior knowledge about h,θ and φ is used.

distance |‖p
j
r1 − p

j
r2‖2 − ‖p

j+1
r1 − p

j+1
r2 ‖2| from each other.

Figure 4(a) illustrates this process for a single pair.

III. REGISTRATION

Accurate image alignment is of utmost importance since

it has a direct impact on the mosaicing result. As it turns

out, even small registration errors in the image coordinate

system can cause large errors in the road coordinate system.

This is because the camera is highly tilted with respect to the

relevant road plane leading to decreasing image resolution and

registration accuracy in the far field. Note that this is not the

case for traditional stitching tasks.

Because of this we employ a four-stage registration algo-

rithm which first estimates the ego-pose, secondly segments

keyframes into foreground and background, afterwards finds

additional road correspondences via a RANSAC4-based search

and finally performs bundle adjustment in a probabilistic setup

with Gaussian Process priors.

A. Ego-pose initialization

We first initialize the calibration parameters f, c and the

road-to-camera transformation parameters (h1, θ1, φ1) = ... =
(hN , θN , φN ) according to our prior knowledge about the

camera setup. The only missing parameters to complete the

vector Θ0 are the road-to-road transformation parameters.

As shown in [14] the least squares problem to fitting a 3D

point set to another can be solved in closed form by computing

the singular value decomposition of a 3× 3 matrix. We make

use of this algorithm for our 2D point fitting problem in order

to minimize

E
j
point =

∑

i

‖p
j
ri − p

j+1
ri ‖2

(2)

where p
j
ri denotes road point i at keyframe j. Solving equation

2 results in the initial estimate for the missing translation and

rotation parameters (αj , tj) for j = {1, ..., N − 1}.

B. Road segmentation

Given our initial estimate Θ0 we intend to refine the param-

eters in a global optimization scheme. This requires accurate

road-to-road correspondences between keyframes which are

sought in the next section. A first step consists of segmenting

foreground objects from the background (road). Since we are

using a monocular setup, stereo-information is not accessible

for this task. We tackle this problem by observing that points

on the road usually transform in a way distinct from points

lying on moving or static objects (e.g. cars).

Applying the sparse iterative version of Lucas-Kanade op-

tical flow estimation (as described in [15]) on Harris corners

below the horizon line5, results in 2-dimensional optical flow

vectors vreal for salient pixels pi, where the index i denotes

that it lies in the image plane. The virtual optical flow vvirt to

compare against is calculated by projecting the ”road flow”

into the image, using the estimed parameters from section

4RANdom SAmple Consensus.
5The horizon line can be easily determined by h,θ and φ.



III-A. The final error value verr is computed by weighting

the norm of the optical flow differences with the angular

agreement of both vectors, thereby penalizing contradicting

vector directions.

verr = ‖vreal − vvirt‖2

(

2 − vT
realvvirt

‖vreal‖2‖vvirt‖2

)

vreal = (
∂pi

∂u
,
∂pi

∂v
)T

vvirt = KTrc(pr + pv) − pi

pv =
Tj

rrpr − Tj−1
rr

−1
pr

(tj+1 − tj−1)

pr = T−1
rc K−1pi

Here pr denotes road coordinates and pv is the road flow

vector for this point, obtained by an approximation to the

trajectory tangent. After calculating verr for all points which

exhibit enough texture [13] we apply nearest-neighbor cluster-

ing and remove clusters with less than 10 points. We extend the

convex hull of all remaining point sets to approximately cover

the whole object. Points inside the polygons, above the horizon

line or on the engine hood are masked while the remaining

regions are assumed to stem from the road. An example of the

segmentation result is depicted in figure 5 for a single frame.

C. RANSAC-based correspondence refinement

Having segmented the keyframes into road and non-road

regions enables us to find correspondences more precisely.

We employ an iterative correspondence search making use of

the planarity assumption. To do so we warp the image and

mask from keyframe j + 1 to the image coordinate system of

keyframe j using bilinear interpolation and the homography

T
j
ii = K Tj+1

rc Trr Tj
rc

−1
K−1

as depicted in figure 6. We then calculate Harris corners for all

non-masked pixels in the warped image j + 1 and search for

the best match in image j. Template matching and RANSAC

are employed for finding inlier correspondences and estimating

the homography T
j
ii at the same time, making use of the DLT

algorithm for calculating each random sample. This procedure

is repeated for a smaller search area, a bigger template size and

the new T
j
ii until convergence (typically after 2-3 iterations).

The remaining inlier correspondences are then used in the

bundle adjustment stage described in the next section.

D. Global optimization with priors

This section describes how we find the optimal parameters

using all information available to us. We perform temporal in-

tegration via bundle adjustment with priors on the parameters.

The regularization term helps when dealing with ambiguities

or small registration errors as in our case.

We seek to maximize the posterior probability of the pa-

rameters given the observations with respect to the parameters

P (Θ|P1, ...,PN−1) ∝ P (P1, ...,PN−1|Θ)P (Θ) (3)
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Fig. 5. Road segmentation using virtual optical flow. Here we depict the
optical flow (yellow) and the virtual optical flow (green) for keyframe 7 of
the test sequence from figure 4(b). To give robust results, we do not use dense
optical flow, but instead calculate the optical flow only at locations with high
saliency. Green circles indicate deviations in optical flow and the red polygon
shows the refined convex hull which is used for masking objects.

(a) Iteration 1 (b) Iteration 2

Fig. 6. RANSAC correspondence refinement. This figure illustrates
iteration 1 and 2 of the RANSAC correspondence search. While the red channel
shows keyframe j, the green channel displays keyframe j + 1 warped to the
image coordinate system of keyframe j. Inlier correspondences are depicted
in red and green while outliers are marked black. For the sake of clarity this
figure does not show the object masks which were used.

where Θ are the parameters and Pj is the match probabil-

ity which depends on the correspondences found between

keyframe j and j + 1 and the geometric parameters.

Since we do not consider correspondences between non-

consecutive keyframes the pairwise likelihood is conditionally

independent

P (P1, ...,PN−1|Θ) =

N−1
∏

j=1

P (Pj |Θ) (4)

and we assume white noise on the correspondences

P (Pj |Θ) ∝ exp(−1

2
d

T
j Σ

−1
dj)

with Σ = diag(σ2
d, ..., σ

2
d)T and the reprojection error distance

di
j = ‖T

j
iip

i−
j − pi+

j ‖
2
.

Here pi−
j denotes the i’th correspondence of Pj in the image

coordinate system of keyframe j, T
j
ii = T

j
ii(Θ) represents the



(a) Initialization (b) Global optimization result (c) Gain compensation result (d) Gain compensation & blending

Fig. 7. Road mosaicing. While figure 7(a) shows the initialization configuration, figure 7(b) depicts the combination of base images after optimizing the
parameters with equation 3. Artificial edge artifacts emerge due to different gains, small registration errors and object shadows. We reduce this effect by
compensating for the gain (7(c)) and blending the base images at multiple bands as depicted in figure 7(d). However, as can be seen from the marker at the
bottom left of 7(d), small registration errors persist due to the high sensitivity of the extrinsic parameters and the low resolution of the camera.

homography for transforming pi−
j into the image coordinate

system of keyframe j + 1 and pi+
j is the corresponding point

in keyframe j + 1.

To circumvent ambiguities and compensate for accu-

mulating registration errors we do not optimize the log-

likelihood logP (P1, ...,PN−1|Θ) directly, but rather add

priors on the parameters and optimize the log-posterior

logP (Θ|P1, ...,PN−1).
Assuming independence of the parameters we have

P (Θ) = P (f, c)P (h)P (θ)P (φ)P (v)P (ω) (5)

where v and ω are the velocity and the angular rate of the

camera over ground. Since we assume the camera intrinsics

to be fixed we model the probability

(f, c) ∼ N (µc|Σc) (6)

according to our knowledge from the calibration process.

The remaining parameters are assumed to vary over the se-

quence, i.e. are functions over time. We encourage smoothness

by putting Gaussian Process priors [16] on the function space

and model the mean function of the individual processes via

our prior knowledge about the camera setup (e.g. height of the

camera). Thus we have

f(t) ∼ GP(µf (t), σf (t, t′)) (7)

with f ∈ {h, θ, φ, vx, vy, ω}. For all f we set the mean

function identical to the initial estimate of the parameter

µf (t) ≡ f0 and we model the covariance function σf (t, t′)
using the squared exponential kernel

σf (t, t′) = σ2
fl

exp(− (t− t′)
2

2σ2
fw

) + δt=t′σ
2
fη

with kernel height σ2
fl

, width σ2
fw

and noise σfη
for each

function f . The hyperparameters σ2
fl

, σ2
fw

are set according to

our belief about the variance and the smoothness of f . A small

noise term is added to increase stability when calculating the

inverse of the covariance matrix for P (f).

Integrating the priors (5) and the likelihood (4) into

(3) and taking the logarithm yields the log-posterior

logP (Θ|P1, ...,PN−1) which can be maximized by standard

gradient descent techniques like Scaled Conjugate Gradients

[17].

IV. MOSAICING

Simple merging of road images leads to unsatisfactory

results due to differences in gain, vignetting, object shadows

and registration errors as depicted in figure 7(b). Thus, in order

to create the final road mosaics we perform two additional

steps. After generating ”base images”, we first compensate

for the camera gain which might have changed during the ride.

Then we combine the road images using multi-band blending

[9], [10] to generate a visually pleasing result and remove

artificial edges.

A. Creating base images

Having estimated the parameters Θ, image points can be

transformed from each keyframe to any other keyframe or a

global road coordinate system. Thus occluded pixels in one

image can be replaced by fusing intensity information from

other images. After selecting a target coordinate system (e.g.

the road coordinate system for generating top-down views)

we generate one base image per keyframe which contains

all visible pixels warped into the target coordinate system

using bilinear interpolation (this is illustrated in figure 8(a)).

Combining the base images to the final mosaic is done by

taking pixels from the closest base image. Here closest refers

to the Euclidian distance from the camera center of the base

image to the pixel’s global road position.

B. Gain compensation

In this section, we show how we can solve for the overall

gain (a photometric parameter) in closed-form. The gain is

denoted as the vector g = (g1, ..., gN )T where gi represents

the gain of base image Ii. Our goal is to minimize the error

function

Egain =
∑

i 6=j

(giµij − gjµji)
2 (8)



(a) Base image (b) Blending weights

Fig. 8. Base image and blending weight. Figure 8(a) shows the base image
I0
i

for a keyframe of the test sequence. The corresponding blending weight

Wkσ

i
is depicted in figure 8(b) for σ = 1.5 and k = 0. The small images on

the right side show the red patch for bands k = {1, 3, 5}.

where µij stands for the mean of pixels in image Ii which

overlap with image Ij . We exclude the trivial solution g ≡ 0

via the constraint gT g = N using Lagrange multipliers. This

avoids the choice of parameters as in [10]. Equation 8 is

quadratic in g, thus the problem can be rewritten as minimizing

Egain = gT Ag subject to gT g = N . This leads to the

eigenvalue problem

Ag̃ = λg̃

where

Aij =

{

∑

k 6=i µik for i = j

−µijµji otherwise

The solution is given by g =
√
N g̃ with g̃ being the

eigenvector corresponding to the smallest eigenvalue of A. The

result of compensating the gain is depicted in figure 7(c).

C. Multi-band blending

Following [9], [10] we use multi-band blending to confine

the effect of artificial edges due to the reasons discussed above.

The idea is to blend low frequencies over a large spatial

range, and high frequencies over a short range. Therefore

the blending weights Wi and base images Ii need to be

smoothed for the different bands and the bandpass images Bkσ
i

are calculated by differencing the smoothed base images. For

k ≥ 1 we have

Wkσ
i = W

(k−1)σ
i ⊗ gσ̃(k)

Ikσ
i = I

(k−1)σ
i ⊗ gσ̃(k)

Bkσ
i = I

(k−1)σ
i − Ikσ

i .

where the standard deviation of the Gaussian blurring kernel

is set to σ̃(k) =
√

2k + 1σ such that the range of wavelengths

does not change for subsequent bands. Here W0
i and I0i denote

the base weights and base images respectively and ⊗ is the

convolution operator. Blending weights for a single keyframe

are depicted in figure 8(b).

Combining overlapping images for each band linearly

Ikσ
Σ (u, v) =

∑

iW
kσ
i (u, v)Ikσ

i (u, v)
∑

iW
kσ
i (u, v)

Bkσ
Σ (u, v) =

∑

iW
kσ
i (u, v)Bkσ

i (u, v)
∑

iW
kσ
i (u, v)

results in the final road mosaic

Imosaic = IKσ
Σ +

∑

k

Bkσ
Σ

with K the total number of bands. The blending result is

depicted in figure 7(d).

V. CONCLUSION AND FUTURE WORK

In this paper we have shown that accurate road mosaicing

is possible from monocular image sequences only, even in

heavy traffic situations. This leads to an important gain in

visual information for subsequent processing steps. Further

work will focus on an iterative version of the algorithm which

is able to add keyframes to an existing map in real-time. Since

road segmentation (described in section III-B) is key to finding

accurate correspondences we also intend to consider additional

features like appearance or stereo information for this step.
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