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Abstract

Piecewise planar models for stereo have recently be-

come popular for modeling indoor and urban outdoor

scenes. The strong planarity assumption overcomes the

challenges presented by poorly textured surfaces, and re-

sults in low complexity 3D models for rendering, storage,

and transmission. However, such a model performs poorly

in the presence of non-planar objects, for example, bushes,

trees, and other clutter present in many scenes. We present

a stereo method capable of handling more general scenes

containing both planar and non-planar regions. Our pro-

posed technique segments an image into piecewise planar

regions as well as regions labeled as non-planar. The non-

planar regions are modeled by the results of a standard

multi-view stereo algorithm. The segmentation is driven by

multi-view photoconsistency as well as the result of a color-

and texture-based classifier, learned from hand-labeled pla-

nar and non-planar image regions. Additionally our method

links and fuses plane hypotheses across multiple overlap-

ping views, ensuring a consistent 3D reconstruction over

an arbitrary number of images. Using our system, we have

reconstructed thousands of frames of street-level video. Re-

sults show our method successfully recovers piecewise pla-

nar surfaces alongside general 3D surfaces in challeng-

ing scenes containing large buildings as well as residential

houses.

1. Introduction

Automatic dense 3D reconstruction from images and

video has long been a challenge in computer vision. Re-

cently, fitting a scene with a piecewise planar model has

become popular for reconstructing urban scenes [5, 17, 22],

as it has several advantages. The strong planarity assump-

tion overcomes the challenges presented by poorly textured

or specular surfaces that are often characteristic of man-

made planar structures, and the resulting models are low
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Figure 1. (a) Original image. (b) Planes found by RANSAC in

depthmap. (c) Planar class probability. (d) Final plane labeling

overlaid on depthmap. Colors = planes, gray = no plane, and black

= discarded. (e) Resulting 3D model with planes highlighted.

complexity, which is important for rendering, storage, and

transmission. Furthermore, simplified geometry can often

look better, even if the overall surface accuracy is lower,
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since piecewise planar surfaces better resemble man-made

urban structures.

However, such a model performs poorly in the presence

of highly non-planar objects such as trees, cars, bushes, and

other clutter present in urban scenes. Recent work such

as Furukawa et al. [5] and Sinha et al. [17], produce very

convincing 3D reconstructions for man-made architectural

scenes, as far as the scene is piecewise planar. But for non-

planar objects and clutter, the reconstructions can appear

unnatural or even completely incorrect. To address this

problem, we present a stereo method capable of handling

more general scenes containing both planar and non-planar

regions. Our proposed technique segments an image into

piecewise planar regions as well as regions which are la-

beled as non-planar. The non-planar regions are modeled by

the output of a standard multi-view stereo algorithm. Thus,

our method maintains the advantages of piecewise planar

stereo, while also having the ability to fall-back to a general

representation to handle non-planar surfaces.

The inputs to our algorithm are a video sequence or col-

lection of images, intrinsic and extrinsic camera calibration

for each image, and a dense depthmap for a subset of the

views. The output is a refined set of piecewise planar and

non-planar depthmaps that are then used to generate a tex-

tured polygonal mesh representation of the scene. The ini-

tial camera poses and depthmaps can be obtained with a

variety of structure from motion (SfM) [14, 18] and dense

stereo techniques [8, 13].

From the initial set of depthmaps, a number of plane hy-

potheses are found using a RANSAC method (Figure 1b).

Similiar to Furukawa et al. [5] and Sinha et al. [17], for each

input depthmap, we set up an MRF problem where each

pixel is assigned a label corresponding to one of the previ-

ously obtained plane hypotheses. The key difference in our

approach is the addition of a non-plane label which repre-

sents the input stereo depthmap. Label likelihoods are de-

fined as the photoconsistency of the plane, in case of a plane

label, or of the depthmap, in case of the non-plane label. In

the spirit of model selection, the non-plane label incurs an

additional penalty, due to the higher degrees of freedom in

the depthmap surface. A smoothness prior is defined that

penalizes label transitions and is weighted by surface conti-

nuity and image gradients. The resulting energy functional

is minimized using graph-cuts [2, 3, 11, 19].

To further help distinguish planar and non-planar sur-

faces, we have trained a classifier based on image color and

texture features. The training set includes image segments

that have been hand-labeled as either planar or non-planar.

A k-nearest neighbor classifier then produces a planar class

membership probability for each segment of the overseg-

mented input images (Figure 1c), and the probability is in-

cluded in the label likelihood. The reason for this additional

constraint derives from our piecewise planar assumption. It

may very well be that a plane fits a bush or sloping ground,

at least within the uncertainty of the stereo reconstruction. It

is in fact the appearance of these image regions that indicate

they are non-planar. This constraint also helps to ensure the

correct plane label for specular surfaces such as windows

which may have poor photoconsistency.

Additionally, our method links and fuses the initial plane

hypotheses across overlapping views, ensuring a consis-

tent 3D reconstruction over an arbitrary number of images.

Plane segments for which the point-to-plane distances fall

within a certain threshold are linked, and the plane estimates

are fused. Because overlapping views can share the same

plane hypotheses, the image labeling can be performed in-

dependently for each view, and the resulting 3D model will

be consistent, i.e. a single planar surface can be extended

indefinitely. Also, because each image is processed sepa-

rately, our algorithm is out-of-core, needing only enough

memory for one view at a time, and making it highly scal-

able. Using our system, we have reconstructed thousands

of frames of street-level video. Results show our method

sucessfully recovers piecewise planar surfaces alongside

general 3D surfaces in challenging scenes containing large

buildings as well as residential houses.

2. Related Work

Furukawa et al. [5] use a very specific Manhattan-world

model, where all planes must be orthogonal, and Sinha et

al. [17] use a general piecewise planar model. Non-planar

surfaces are not handled well and are either reconstructed

with a staircase appearance or are flattened to nearby planes.

The work of Zebedin et al. [22], focuses on aerial imagery,

and in addition to planar rooftops allows for a surface of

revolution representation to handle domes and spires. Our

model allows for a general depthmap reconstruction as an

alternative to planes, which handles any non-planar surface.

Zebedin et al. [22] require each building segmented as

input, and each building is processed independently, mak-

ing it trivial to scale to large datasets. Furukawa et al. [6]

present a Manhattan-world fusion technique for the purpose

of generating floor plans for indoor scenes. Multiple views

must be fused in a single volumetric representation, limiting

the overall size of the reconstruction. We use a multi-view

plane linking approach which allows images to be processed

separately (out-of-core), and can produce consistent recon-

structions over datasets of arbitrary size.

Hoiem et al. [9] and Saxena et al. [16] use color, texture,

and other image features to infer geometric context. They

are able to create a plausible 3D representation from a sin-

gle view, however no depth measurements are made. We

use many of the same features as [9], although our classi-

fication problem is much simpler. Our planar versus non-

planar classifier is used in addition to photoconsistency and

smoothness constraints in the image labeling task. Xiao et



Figure 2. Our piecewise planar and non-planar stereo system.

al. [21] use trained classifiers and multi-view constraints to

segment street-side images into ground, tree, building, and

sky regions. 3D models are then fit to the buildings. We also

combine learned image appearance with multi-view con-

straints, but no hard decision is made until the the final plane

labeling.

3. Piecewise Planar and Non-Planar Stereo

The steps of our algorithm are layed out in Figure 2.

The input to our algorithm is a collection of images, camera

poses, and depthmaps. Depthmaps can be computed using

any standard stereo method. This reconstruction is typically

poor for weakly textured and specular surfaces, but the re-

sult is sufficient to initialize our algorithm.

3.1. Plane Hypothesis Generation

We first obtain a set of plane hypotheses for every im-

age using a RANSAC method. Typically one seeks to find

a single model to fit all the data, but our objective is to find

multiple locally fit models. In this regard, there are sev-

eral important aspects of our method which are crucial to

achieving a good set of planes.

• Sampling. A plane model can be obtained from three

points in the depthmap sampled at random. The first

point is selected from a uniform distribution over the

image. The second two points are selected from nor-

mal distributions centered at the first point with a stan-

dard deviation of σ.

• Scoring. Each model is evaluated against only points

nearby the original samples. Only points within M
pixels of the first sample are considered. Instead of

scoring simply by the inlier count (number of points

within a threshold distance to the plane), we score by

the liklihood of each point fitting the plane, according

to the MLE-sac method [20].

• Contiguity. After RANSAC returns a plane, the inlier

set is determined by computing the distance of each

point to the plane. Additionally, the inlier set is re-

stricted to points which are connected (contiguous) to

the initial sample, according to the image graph. A

new plane is obtained as the least-squares fit to the in-

lier points. Inliers are again determined, and the pro-

cess is repeated for several iterations. (This contiguity

constraint is not used inside the RANSAC sampling

loop for performance reasons.)

The final set of inliers is then removed from the im-

age, and RANSAC is again repeated on the remaining

points. For each image we obtain a set of N planes Π =
{π1 · · ·πN}. This includes most of the major planes in the

scene, as well as some spurious planes which happen to fit

well to non-planar or quasi-planar structures. We add to

each set the plane at infinity, denoted π∞, which is use-

ful for labeling sky or distant surfaces which are not recon-

structed by stereo. At this point, an initial labeling of each

image can be performed, simply by assigning each inlier set

from RANSAC to its respective plane.

For all of our experiments we use σ = 8 pixels, M =
100 pixels, and N = 20 planes. Note that our plane detec-

tion method is much simpler than that of Sinha et al. [17].

One reason is that [17] operates on points and lines while

our method operates on depthmaps.

3.2. Multi-View Plane Linking

For multi-view reconstructions, it is imperative to ob-

tain consistent plane hypotheses across overlapping views.

A planar surface visible in several images will generate

slightly varying plane hypotheses, due to small variations

in the depthmaps. Also, it is intractable to consider every

plane for every image when processing large datasets. Thus

we perform a single pass over all images and establish links

across nearby views between mutually supporting planes.

All linked plane hypotheses are fused to give a single multi-

view estimate for the plane.

Planes are linked as follows. For every plane πi, the set

of all planes in nearby views, including the planes in the

same view as πi, is considered for linking. For every plane

πj in that set, if a sufficient number of points (90%) be-

longing to πi falls within a threshold distance (1% of the

camera-to-point distance) of πj , then πi and πj are linked.

A new plane is fit to the combined set of points belonging

to all the linked planes. A global disjoint set data structure

is created which maintains each set of linked planes. The

disjoint set can be held in memory at all times, since only

a few bytes are required to identify a plane. This ensures

that surfaces seen in multiple images have the exact same

plane hypothesis. It also serves to link similar planes from

repeated structures, or single planes which appear disjoint

in the images due to occlusion. See Figure 3.

3.3. Graph-Cut Labeling

Once the plane hypotheses have been established, the

next step is to perform a pixel-wise labeling of each im-

age. Each image is solved independently, but since plane

hypotheses have been fused, the resulting depthmaps will
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Figure 3. The second row shows a subset of the images used to compute the depth maps. The third row illustrates the the plane detection

results of our modified RANSAC technique. The fourth row shows the plane labels after linking. Note that the same scene plane now has

a consistent label. The fifth row shows the classification results of the image into planar or non-planar structure (planar class probability

black=0, white=1). The sixth row shows the results of the graph cut based plane assignment. See Figure 6 for the resulting 3D model.

be globally consistent. For each image, an MRF is defined

which leads to the standard energy minimization problem

involving data and smoothness terms. Our goal is to obtain

a labeling so as to minimize the energy functional

E(L) =
∑

p∈I

Edata(L(p))+
∑

p,q∈N

λsmoothEsmooth(L(p), L(q))

(1)

where I is the set of pixels in the image, N is the standard

4-neighborhood, and L is the labeling.

The set of labels is the union of all planes, a non-

plane label, and a discard label. The labeling function

L : R2 → {π1, · · · , πN , π∞, non-plane, discard} identi-

fies a label for every pixel. The non-plane label indicates

the original stereo depthmap, and the discard label indicates

no reliable reconstruction could be obtained.

The Edata function is defined as

Edata(l) =







min(ρ(l), ρmax) if l ∈ {π1 · · ·π∞}
min(ρ(l), ρmax) + ρbias if l = non-plane

αρmax if l = discard

(2)

where ρ is a photoconsistency (dissimilarity) measure be-

tween the pixels in nearby views put into correspondence

by the assigned plane, or by the original stereo depthmap.

For photoconsistency we use the Birchfield-Tomasi pixel-

to-pixel dissimilarity measure [1]. For occlusion handling

we use the multi-view technique of [10]. For the non-plane

label, a penalty ρbias is given in order to penalize the model

with more degrees of freedom. The dissimilarity measures

have been truncated to ρmax in order to handle poorly match-

ing specular or reflective surfaces such as windows. The

discard label receives slightly less penalty than maximum.

Thus small poorly matching regions will be labeled accord-

ing to their surroundings due to the smoothness term, but

large poorly matching regions will incur enough cost to

be discarded. For all our experiments we set ρmax = 6,

ρbias = 0.5, and α = 0.9. (See Figure 3.)

The Esmooth function is defined as

Esmooth(lp, lq) = g ·







0 if lp = lq
dmax if lp or lq ∈ {π∞, discard}
d′ otherwise

(3)



d′ = min(d, dmax) + dmin (4)

g =
1

γ‖∂I/∂u‖2 + 1
(5)

where d is the distance between the 3D neighboring points

according to their labels, and g is the image gradient mag-

nitude (color or grayscale) between the two neighbors. Our

video sequences were captured along with GPS data, so ab-

solute distances can be measured. Otherwise, distances can

be defined relative to the median value in the depthmap for

example. dmin incurs a minimum penalty in order to pre-

vent spurious transitions between planes that are close in

3D. dmax makes the penalty robust to discontinuities. For all

our experiments we set λsmooth = 5, dmin = 2, dmax = 0.2
meters, and γ = 10.

The energy can be minimized using the well-known

multi-label graph-cut method [3]. One limitation of graph-

cuts, and the discrete MRF in general, is that of metrication,

which follows a manhattan distance, not a euclidean one.

This leads to stair-case and other artifacts. However, we use

this to our advantage in man-made scenes, where the ver-

tical direction and dominant facade normal can be readily

obtained [7] from the vanishing points of the scene struc-

ture. The image can then be rectified so that the horizontal

and vertical vanishing points correspond to the x and y axes.

Then the Manhattan distance metrication actually helps to

enforce that label boundaries follow vertical and horizontal

lines.

3.4. Planar Classifier

Even with the non-plane label available, surfaces such

as bushes, trees, and grass are occasionally detected and as-

signed by the graph-cut solution. Ultimately for some re-

gions, within the uncertainty of the stereo depth, a plane

may well fit those surfaces. However, this leads to an un-

desirable result since common experience does not support

planes in such natural objects. To this end, we train a clas-

sifier based on color and texture features to distinguish be-

tween surfaces that appear planar, and those that do not.

Features are computed from image patches. Inspired by

[9], we use the following color features: mean red, green,

and blue (RGB color space), mean hue, saturation, value

(HSV color space), and the hue histogram (5 bins). We use

the following features computed from the edge orientation

histogram [12]: entropy, maximum value, and number of

modes. The texture features capture the fact that man-made

objects tend to have only a few consistent edge orientations,

while natural objects have a less structured appearance.

Each image is segmented into a grid of 16 × 16 pixel

cells, and the feature vector is computed for each cell. We

experimented with commonly used oversegmentation (su-

perpixel) algorithms [15, 4], but in the end we preferred

the regular grid. We have found that there is enough in-

(a) (b)

(c) (d)
Figure 4. Result of graph-cut labeling with and without the planar

class probability term. (a) Original color image. (b) Planar class

probability. (c) Graph-cut labeling result without the class prob-

ability term. (d) Labeling result with the class probability term,

which helps to remove many false planes labeled in the bushes

and grass.

formation in the photoconsistency and smoothness penal-

ties to find accurate object boundaries. Therefore we prefer

the grid as it ensures segments of a regular size and den-

sity. Approximately five thousand segments in five images

were hand labeled as planar or non-planar. For a given in-

put image, the planar class probablility for each grid cell

is computed using k-nearest-neighbors. In the end we are

interested in the class membership probability, as we will

defer the final plane labeling decision until the graph-cut.

Let a ∈ [0, 1] be the planar class probability for a given

segment, and l be the label of pixel within that segment.

The data term now becomes

E′
data(l) = Edata(l)+λclass







1− a if l ∈ {π1, · · · , π∞}
a if l = non-plane

0 if l = discard.
(6)

We have set λclass = 2 for all our experiments. Figure 4

demonstrates the effect the class penalty has on the labeling

result.

4. Results

To test our system, we have processed street-side

video captured by two vehicle-mounted Point Grey Flea2

1024x768 color cameras. The cameras are aimed perpen-

dicular to the driving direction, with one camera pointed

horizontally and the other pointed upwards at 30 degrees.

The composite camera system has a horizontal field of view

of 120 degrees, and a vertical field of view of 60 degrees.

The captured data contains a variety of street-level scenes
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Figure 5. Results from the various steps of our algorithm for several scenes. Each of the four panes is as follows. Top Left: original color

image. Top Right: RANSAC planes. Bottom Left: Planar class probability. Bottom Right: Final graph-cut labeling.

including large buildings and residential houses. These

scenes contain large planar facade surfaces, but also contain

many non-planar objects such as bushes, trees, and cars.

For all our experiments we have used the same param-

eters which have been given throughout Section 3. Param-

eters were chosen empirically and without much difficulty.

The fact that we used the same set of parameters for several

diverse datasets indicates that the parameters are not overly

sensitive.

Although the end goal of our approach is to produce

depthmaps, we have evaluated the final graph-cut labels

for accuracy against hand-labeled test set of 22700 pla-

nar and non-planar image segments in 28 images. Since

the graph-cut labels are computed on the full resolu-

tion, the segment label is determined by majority vote.

Any of {π1, · · · , πN , π∞} count as planar, and either of

{non-plane, discard} count as non-planar. 94.7% of the pla-

nar segments and 97.2% of the non-planar segments were

labeled correctly.

Figure 5 shows 9 images sampled from our results. For

each image, the results of the RANSAC plane detection,

planar classification, and graph-cut labeling are shown. In

each scene, most of the major planes are found by our

RANSAC method, although some planes are occasionally

missed, especially when they occupy only a small portion

of the image. The planar classifier performs well, despite its

simplicity, and provides a good cue for the final graph-cut

labeling to select between plane labels and the non-plane la-

bel. The final graph-cut labeling recovers broad planar sur-

faces while also identifying non-planar surfaces. Note that

even though the planar classifier is performed on a coarse

grid, the graph-cut result recovers fine object boundaries

due to the photoconsistency constraint.

The number of input video frames ranges from 200 to

800 (see Figures 6-8 for exact numbers), and a refined

depthmap is computed for every 10th frame. Our unopti-

mized C++ implementation takes about 1 to 2 minutes per

depthmap for all steps.



Final 3D Model 3D Model with Highlighted Planes

Before After Before After
Figure 6. 3D model produced by our piecewise planar and non-planar stereo algorithm from 400 images (40 depthmaps). The before and

after images show the improvements of a piecewise planar model: textureless and specular surfaces (windows) are recovered, straight lines

remain straight, and 3D model complexity is reduced. Also note that the reconstruction is able to preserve non-planar surfaces as well.

Final 3D Model 3D Model with Highlighted Planes

Before After Before After
Figure 7. 3D model produced by our piecewise planar and non-planar stereo algorithm from 800 images (80 depthmaps).

Figures 6-8 show the final 3D models produced by our

system. Many textureless and specular surfaces that were

missed in the original reconstruction were recovered by our

system due to the piecewise planar model. Also, because

our model enforces planes, straight lines on planar surfaces

remain straight in the 3D models. Especially note that the

non-planar surfaces are preserved, and are not flattened to

planes as in other piecewise planar stereo methods.

5. Conclusion

Results have shown that our piecewise planar and non-

planar model can successfully recover planar surfaces

alongside non-planar surfaces, even in highly cluttered

scenes. One of the weakness of our reconstructions is the

lack of completeness. Many planar surfaces that occupy

only a small part of the image are missed by our system,

and other surfaces are simply not seen in any of the cam-

eras. This can be addressed by adding a more complete

set of views to the dataset. Note that these scenes are sig-

nificantly more cluttered than those addressed by previous

piecewise planar stereo methods.
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Before After Highlighted Planes
Figure 8. 3D model produced by our piecewise planar and non-planar stereo algorithm from 200 images (20 depthmaps).
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