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Abstract

We present a novel multi-baseline, multi-resolution

stereo method, which varies the baseline and resolution pro-

portionally to depth to obtain a reconstruction in which the

depth error is constant. This is in contrast to traditional

stereo, in which the error grows quadratically with depth,

which means that the accuracy in the near range far exceeds

that of the far range. This accuracy in the near range is

unnecessarily high and comes at significant computational

cost. It is, however, non-trivial to reduce this without also

reducing the accuracy in the far range. Many datasets, such

as video captured from a moving camera, allow the baseline

to be selected with significant flexibility. By selecting an ap-

propriate baseline and resolution (realized using an image

pyramid), our algorithm computes a depthmap which has

these properties: 1) the depth accuracy is constant over the

reconstructed volume, 2) the computational effort is spread

evenly over the volume, 3) the angle of triangulation is held

constant w.r.t. depth. Our approach achieves a given target

accuracy with minimal computational effort, and is orders

of magnitude faster than traditional stereo.

1. Introduction

Stereo is a well-studied problem in computer vision [14].

Recent work has been very successful in solving the corre-

spondence problem, which is to decide which pixels in one

image correspond to which pixels in another. Techniques

employing graph cuts and belief propagation can achieve

error rates of less than 1% (on laboratory data). However,

for many applications the goal is ultimately not pixel cor-

respondence but depth accuracy. Even with perfect cor-

respondences, the depth error in traditional stereo grows

quadratically with depth, which means that the accuracy in

the near range far exceeds that of the far range. While the

accuracy in the far range is unusably bad, the accuracy in

the near range is unnecessarily high and comes at signifi-

cant computational cost. Accuracy can be improved by in-

corporating multiple views. These views provide additional

information which aids in the correspondence problem, but

Figure 1. L eft: Standard stereo. Note that the distance be-

tween depths increases quadratically. R ight: V ariable B ase-

line/Resolution Stereo. The distance between depths is held con-

stant by increasing the baseline and selecting the appropriate res-

olution.

they can also improve the depth accuracy geometrically by

increasing the angle of triangulation. In many applications,

such as structure from motion from video [12 ], or recently

reconstruction from community photo collections [4], the

choice of views for stereo is quite fl exible. O ur technique

focuses on selecting the best cameras, as well as the most

appropriate sampling in the images, to compute a depthmap

that meets the desired geometric accuracy with minimal

computation. Specifically, we increase the baseline to in-

crease accuracy in the far range, and we reduce the reso-

lution (using a gaussian pyramid) to reduce computational

effort in the near range. Additionally our novel algorithm

is compatible with most matching and optimization strate-

gies, and will work with any higher level post-processing

typically used in stereo, e.g. depth fusion [10 , 19 ].

Many applications today require accurate 3 D models

of real-world scenery. For example, mapping applications

such as Google Earth and Microsoft V irtual Earth have re-

cently incorporated textured 3 D models of cities. These

models are typically extracted from aerial and satellite im-

ages and lack ground level detail. Several research projects

aim to produce 3 D reconstructions of cities from pho-

tographs or video acquired from ground level. The amount

of image data required to observe an entire city can be enor-

mous. Therefore, processing speed, as well as accuracy, is

an important consideration. Furthermore, scenes captured
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from ground level typically exhibit a large depth range.

Standard stereo is ill-suited to such scenes since the error

grows quadratically with depth.

The motivation for our approach derives from the point

of view of a system designer wishing to employ stereo as a

measuring device. O ften, the definition of the stereo prob-

lem assumes the camera parameters are given and fixed,

but these parameters have a significant effect on the depth

accuracy of stereo. The system designer has some ac-

curacy requirements in mind and, with traditional stereo

methods, must carefully select baseline, focal length, and

field of view in order to meet these requirements. Fur-

thermore, computation time is important in real systems,

and so the designer must be conservative. It is unaccept-

able to spend large amounts of time obtaining accuracy that

far exceeds the minimum requirement. B alancing accu-

racy and efficiency for standard stereo is difficult indeed

due to its quadratic error characteristics. O ur novel algo-

rithm enhances stereo to be able to efficiently use the ad-

ditional information contained in dense image sets such as

video by dynamically selecting the appropriate baseline and

image scale for each depth estimate. In contrast to tradi-

tional stereo our technique guarantees a constant target ac-

curacy throughout the maximal possible volume with orders

of magnitude less computational effort.

1.1. Variable Baseline/Resolution Stereo

The motivation for our algorithm is derived from the

depth error in stereo, which can be shown to be

εz =
z2

bf
· εd (1)

where εz is the depth error, z is the depth, b is the baseline,

f is the focal length of the camera in pixels, and εd is the

matching error in pixels (disparity values). Dense image

sets, such as video, allow the baseline b to be selected with

great fl exibility, and because f is measured in pixels, the

focal length can be varied by selecting the appropriate scale

in a gaussian pyramid (up to the maximum value of f at

full resolution). The principal idea of our algorithm is to set

both b and f proportionally to z throughout the depthmap

computation, thereby canceling the quadratic z term, and

leaving εz constant w.r.t. depth. Thus matching scores for

depths in the near range are computed using a narrow base-

line and coarse resolution, while depths in the far range use

a wider baseline and finer resolution.

O ur algorithm, which we call V ariable B ase-

line/Resolution Stereo, exhibits three important properties:

1. B y selecting the baseline and resolution proportionally

to the depth, we can match the quadratic term in the

depth error, and achieve constant accuracy over the re-

constructed volume.

2 . B ecause the accuracy is constant throughout the re-

constructed volume, the computational effort is also

evenly spread throughout the volume.

3 . The baseline grows linearly with depth, therefore the

angle of triangulation remains constant1.

To the best of our knowledge, our method is the first to ex-

hibit all three properties.

In the following sections we consider previous work, an-

alyze the error and time complexity of our algorithm as

compared to traditional stereo, discuss the implementation

of our algorithm in detail, and present results.

2 . P rev ious W ork

Early research on multi-baseline stereo includes the

work of O kutomi and K anade [11] who use both narrow and

wide baselines, which offer different advantages, from a set

of cameras placed on a straight line with parallel optical

axes. A layer-based approach that can handle occlusion and

transparency was presented by Szeliski and Golland [16 ].

The number of layers, however, is hard to estimate a pri-

ori and initialization of the algorithm is difficult. K ang et

al [6 ] explicitly address occlusion in multi-baseline stereo.

For each pixel of the reference view a subset of the cam-

eras with the minimum matching cost is selected under the

assumption that the pixel may be occluded in the other im-

ages. We also use this scheme in our approach. Sato et al.

[13 ] address video-based 3 D reconstruction using hundreds

of frames for each depth map computation. The median

SSD between the reference and all target views is used for

robustness against occlusions. In general, using multiple

images improves matching, and employing wider baselines

can increase the depth accuracy. O ur approach is unique in

that we use a different set of images throughout the compu-

tation such that the baseline grows proportionally to depth.

Multi-resolution approaches are used for stereo to either

speed up computation or to combine the typically less am-

biguous detection at coarse resolution with the higher pre-

cision of fine resolution. The latter was the motivation for

the approach of Falkenhagen [3 ] in which disparities are

propagated and refined as processing moves from coarse to

fine levels of image pyramids. Y ang and Pollefeys [18 ] pre-

sented an algorithm in which cost functions from several

different resolutions were blended to take advantage of the

reduced ambiguity coming from matching at coarse levels

of the image pyramids and the increased precision coming

from matching at fine levels. K och et al. [7 ] use a multi-

resolution stereo algorithm to approximately detect the sur-

faces quickly, since processing speed is important for large

scale reconstruction systems which operate on large dispar-

ity ranges. Reducing image resolution results in an equiv-

1The angle of triangulation is constant w.r.t. to depth. It varies slightly

from pixel to pixel.



alent reduction of the disparity range. Sun [15 ] presented

a method that aims at improving both the speed and relia-

bility of stereo. It operates in bottom-up fashion on an im-

age pyramid in which stripes are adaptively merged to form

rectangular regions based on disparity similarity. A two-

stage dynamic programming optimization stage produces

the final depth map. In these approaches, multiple reso-

lutions are used for speed and/or improved matching, but

depth accuracy is not addressed. A key component of our

algorithm is that we use different resolutions at different

depths. Specifically, we use lower resolutions to estimate

depths in the near range in order to avoid unnecessary com-

putations for accuracy that far exceeds what is required.

Algorithms that take geometric uncertainty explicitly

into account include [9 ] and [7 ]. Matthies et al. [9 ] intro-

duced an approach based on K alman filtering that estimates

depth and depth uncertainty for each pixel using monocular

video inputs. These estimates are refined incrementally as

more frames become available. K och et al. [7 ] proposed

a similar approach that computes depth maps using pairs

of consecutive images. Support for each correspondence in

the depth maps is found by searching adjacent depth maps

both forward and backward in the sequence. When a match

is consistent with a new camera, the camera is added to

the chain that supports the match. The position of the re-

constructed 3 D point is updated using the wider baseline.

While these methods are successful in reducing the error in

the reconstruction, they do not exhibit the properties from

Section 1.1. In particular, the computational effort is con-

centrated in the near range, and as a result the depth accu-

racy in the near range exceeds that of the far range.

3 . Analy sis

B efore analyzing the accuracy and time complexity of

our stereo algorithm, we shall briefl y address the issue of

depth sampling. Stereo seeks to determine the depth of the

surface along the rays passing through each pixel in a ref-

erence image. Each point along the ray is projected into

any number of target images, and a measure of photocon-

sistency is computed. This defines a function in depth, the

minimum (or maximum) of which indicates the depth of the

surface and is discovered by sampling the function at vari-

ous depths. The number and location of the samples should

be defined by the pixels in the target images (disparities).

While supersampling can obtain a more accurate minimum,

the minimum itself does not necessarily accurately locate

the surface. B ecause the frequency content of the images

is limited by the resolution, the photoconsistency function

is also limited, and thus the surface can only be localized

to within one pixel. (Sub-pixel accuracy up to 1/4 pixel

is possible, but the depth accuracy is still proportional to

the pixels.) Note also that subsampling the function with-

out properly filtering the images will lead to aliasing, and

the minimum of the aliased function can often be far from

the minimum of the original function. Therefore the sam-

pling rate must be on the order of one pixel. In stereo, one

cannot expect to obtain greater depth accuracy simply by

finer disparity sampling, and in order to use coarser sam-

pling (to reduce computation time and accuracy), filtered

lower-resolution images must be used. For more details on

sampling in stereo, see [17 ].

3 .1. Accuracy and T im e C om p lex ity

We now analyze the time complexity of traditional stereo

and compare it to the time complexity of our variable base-

line/resolution algorithm. O ur analysis assumes that the

cameras are separated by lateral translation and no rotation,

so that all cameras share a common image plane, and pixel

correspondences have the same vertical image coordinate.

This setup, which is convenient for analysis, can be some-

what relaxed in the actual implementation of our algorithm.

In our analysis we assume that the system designer spec-

ifies a desired accuracy: a maximum error εz , and a maxi-

mum range zf a r . Stereo is expected to deliver depth mea-

surements with error less than εz for all depths z ≤ zf a r .

Consider two cameras with focal length f separated by

distance b. L et d be the difference in x coordinates, called

disparity, of two corresponding pixels. The depth z of the

triangulated point is given by z = bf
d (where f is measured

in pixels). The depth error can be written in terms of the

disparity error εd:

εz =
bf

d
−

bf

d + εd
=

z2εd

bf + zεd
≈ z2

bf · εd. (2 )

The final step is obtained by taking the first order taylor

series approximation about εd = 0.

Here we separate the error into two factors: correspon-

dence error, εd, and geometric resolution, z2/(bf). Ge-

ometric resolution describes the error in terms of the ge-

ometry of the stereo setup, namely baseline, focal length,

and depth. We see that geometric resolution is quadratic

in depth. Correspondence error describes the error from in-

correct matches and the sub-pixel accuracy of the correct

matches. In stereo, correspondence error depends on im-

age noise, scene texture, and other scene properties such as

occlusions and non-L ambertian surfaces. In this paper we

focus on geometric resolution, and assume that the number

of incorrect matches is reasonably low, and that matching

accuracy is bounded to within one pixel. Therefore, meet-

ing our target error bound εz at depth z ≤ zf a r depends on

the baseline and focal length of the cameras.

We will now analyze the effect of baseline and focal

length separately, then combined, followed by an analysis

of our algorithm. We focus our analysis on the target accu-

racy parameters εz and zf a r .



Fixed-baseline stereo. For a fixed-baseline stereo sys-

tem, the accuracy can be adjusted by varying the focal

length parameter f . Since f here is measured in pixels,

it can be increased either by narrowing the field of view

(zoom), or by increasing the resolution of the sensor. We

assume the field of view θf o v has been carefully chosen for

the application, meaning f describes the resolution as

w = 2f ta n
θf o v

2
h =

w

a
, (3 )

where w, h and a are the width, height and aspect ratio of

the image. We can determine the resolution needed to meet

the target accuracy by solving for f in equation (2 ). (Here

we have assumed εd = 1.)

f =
zfar

2

bεz
(4)

number of pixels = wh =
w2

a

=
zfar

4

εz
2

4 ta n 2 θfo v

2

b2a
(5 )

This shows that increasing the resolution alone to meet

the target accuracy requires the image resolution to grow

proportionally to zfar
4! Note that a higher resolution sen-

sor does not necessarily increase the effective resolution.

Higher quality lens optics may also be required, making it

prohibitively expensive, or impossible, to increase the res-

olution at this rate. Another prohibitive factor is the pro-

cessing time. In stereo, each pixel must be tested against

the pixels along the corresponding epipolar line within the

disparity range of the scene. B ecause the depth range is

defined by the scene, the disparity range is some fraction of

the image width, and thus increases with resolution. L etting

D be the ratio of the disparity range to the image width, the

number of pixel comparisons needed is

Tfi xed = Dw2h =
Dw3

a

=
zfar

6

εz
3

8D ta n 3 θfo v

2

b3a

= O(zfar
6εz

−3). (6 )

This means the system designer is severely limited by depth

range. For example, extending the depth range by a factor of

2 would require 26 = 64 times more computational effort!

Fixed-resolu tion stereo. If the resolution is held fixed,

the depth error can only be reduced by increasing the base-

line b. To meet the target accuracy, we solve equation (2 )

for b, yielding b =
zfar

2

f εz
. O ne drawback of increasing the

baseline is that the depth where the fields of view begin to

overlap also increases, and the near range is lost. The depth

where the overlap begins is zn ear = b
ta n θf o v /2

. B ecause

zn ear depends on b, and b grows quadratically with zfar ,

there is a point at which zn ear surpasses zfar , meaning that

the depth where the target accuracy is met is no longer in

the overlapping field of view. In general, one cannot rely on

increasing the baseline alone to meet the target accuracy.

V ariable baseline and resolu tion. In order to avoid zn ear

surpassing zfar , the baseline cannot grow faster than lin-

early with zfar . Thus we set b = βzfar where β can be cho-

sen to give a certain angle of triangulation at zfar . Given

this constraint, we solve for the resolution needed to meet

the target accuracy as follows:

f =
zfar

2

bεz
=

zfar

βεz
(7 )

number of pixels =
zfar

2

εz
2

4 ta n 2 θfo v

2

β2a
. (8 )

From this equation we see that the baseline and the focal

length both grow linearly with zfar , and the required res-

olution grows proportionally with zfar
2 rather than zfar

4.

However, with a linearly growing baseline, zn ear also grows

linearly, and overlap in the near range is lost. Therefore, in

order to accurately reconstruct the entire scene, wide base-

lines must be used in the far range, and narrow baselines

must be used in the near range.

We now analyze our method which uses multiple base-

lines and resolutions to recover depths over the entire view-

ing volume with minimal computational effort. Unlike

previous approaches which combine measurements among

multiple baselines and resolutions, our method chooses a

single baseline and resolution based on the depth being

measured. This approach has several advantages mentioned

in Section 1.1: 1) the depth error is constant for all depths,

2 ) the amount of computational effort is evenly distributed

throughout the volume, 3 ) the depth angle of triangulation

does not vary with depth.

For the sake of analysis, assume that the stereo setup

consists of a continuous set of cameras with baselines given

by the function B(x) = xb, 0 ≤ x ≤ 1, where b is the

required baseline from equation (7 ). For each of these cam-

eras there is an image Ix which has been constructed as a

scale pyramid, again, with a continuous set of scales. The

focal length (in pixels) of the scales is given by the function

F(x) = xf, 0 ≤ x ≤ 1, where f is the required focal length

from equation (7 ). In reality, baselines and scale pyramid

levels are discrete; however, the set of baselines acquired

from a moving camera is quite dense, and the continuous

scale pyramid can be approximated by filtering between the

two nearest discrete levels.

Since our method uses multiple images, it is more con-

venient to parameterize correspondences in terms of their

triangulated depth z instead of their pixel coordinate dis-

parity d. O ur approach varies the baseline and resolution

with z. The baseline is chosen as B(z/zfar ), and the reso-



lution is chosen such that the focal length is F(z/zfar ). B y

substituting this baseline and focal length into the stereo er-

ror equation (2 ), we see that the error is equal to our target

error εz for all z ≤ zfar .

To analyze the time complexity of our algorithm, we sum

the number of pixel comparisons needed at each depth z.

Since we step through depth at a constant rate εz , there are

zfar/εz steps. L etting kεz/zfar be the proportion of the

width and height required at depth kεz , the time complexity

can be expressed as a sum:

Tvariable =

zfar
εz

∑

k= 1

wh

(

kεz

zfar

)2

=
whεz

2

zfar
2

zfar
εz

∑

k= 1

k2

=
4 ta n 2 θfo v

2

aβ2

(

zfar
3

3εz
3

+
zfar

2

2εz
2

+
zfar

6εz

)

= O(zfar
3εz

−3). (9 )

This is a considerable improvement over standard stereo

which is O(zfar
6εz

−3) as shown in equation (6 ). Note that

the reconstructed volume is a frustum (pyramid) ranging

from the camera to zfar . If we divide this volume into vox-

els with side length εz , the number of voxels in the volume

is also O(zfar
3εz

−3). Without prior knowledge, each voxel

must be visited, or at least a number of voxels proportional

to the volume must be visited, to reconstruct the volume.

Under these assumptions, Ω (zfar
3εz

−3) is the asymptotic

lower bound for stereo, which our algorithm achieves.

While our analysis has focused on image-centered

stereo, we briefl y mention a different class of stereo, namely

volumetric methods [2 , 8 ]. B y nature, the time complexity

of volumetric stereo is proportional to the volume, and the

computation time is spread evenly over the volume (prop-

erty 2 from Section 1.1). However, these methods do not

explicitly guarantee geometric accuracy. In order to do so,

voxel size and camera selection must be chosen such that

the projection of each voxel differs from the projection of

the neighboring voxels by exactly one pixel in some camera.

Assuming pixel accurate matching, this ensures that each

voxel is visually distinguishable from its neighbors, and

therefore the surface can be located to within one voxel in

space. To the best of our knowledge, no volumetric method

exists which guarantees uniform geometric accuracy over

the entire volume.

We have assumed that we can step through depth at a

constant rate equal to εz . However, we must ensure the

proper spacing between depth steps in the image [17 ] in or-

der to avoid aliasing. The projection of the tested points

along the ray should be spaced no farther than one pixel

apart, otherwise it is possible the correct match will be

missed. Consider two consecutive depth samples z1 and z2.

We shall measure the spacing of these projected depths in

the image where the finest scale is used, which is the image

corresponding to z2. We denote the baseline and resolution

used at z2 as b2 and f2. We shall define z2 = z1 + ∆z, and

derive the spacing ∆d as follows:

∆d =
b2f2

z1

−
b2f2

z1 + ∆z
(10 )

We now replace b2 and f2 with the values used at z2 (see

equation (7 )).

b2f2 = (z1 + ∆z)β ·
z1 + ∆z

βεz
=

(z1 + ∆z)2

εz

∆d =
(z1 + ∆z)2

z1εz
−

z1 −∆z

εz

=
∆z

εz
+

∆z2

εzz1

(11)

It is reasonable to assume that all depth hypotheses remain

in front of the camera, which means we can assume the

smallest depth tested is εz since it is the target accuracy. B y

solving for ∆z such that ∆d ≤ 1 pixel, it can be shown that

the step size is bounded as εz

2
≤ ∆z ≤ εz . Since we step

through depth at a rate bounded by constants, the time com-

plexity of our algorithm is still O(zfar
3εz

−3). In practice,

for all but the smallest depths, ∆z ≈ εz .

4 . Alg orith m

We use a plane-sweeping approach to compute a

depthmap for a reference view using multiple target views.

Plane-sweeping tests entire depth planes by warping all

views according to the plane, comparing the images to a

reference view and computing a per-pixel matching score

or cost, and storing these in a cost volume from which the

depthmap is then extracted. For more details on plane-

sweeping, see [1, 18 ]. Since there is no need for rectifi-

cation, plane-sweeping can easily use multiple views. In

our algorithm, for each depth plane z, we choose a con-

stant number of images whose baselines are evenly spread

between −B( z
zfar

) and B( z
zfar

). To handle occlusions, we

select the 50% best matching scores [6 ]. Finally, because

pixel-to-pixel matching is inherently ambiguous, additional

constraints such as surface smoothness must be imposed to

compute the depthmap. In our implementation we use semi-

global optimization [5 ] which is both efficient and accurate.

In the actual implementation of our algorithm, the set

of cameras and their associated image pyramids are finite

and discrete, and we do not require that cameras be strictly

constrained to lateral translation and no rotation. Thus we

cannot compute the accuracy and pixel motion by the sim-

ple formulas previously mentioned. Instead we measure the

image sampling and accuracy directly by projecting the hy-

pothesized depths into the leftmost and rightmost views.

Since our depth planes do not intersect the convex hull of



Alg orith m 1 V ariable B aseline/Resolution plane-sweep.

The baseline and resolution increase from narrow to wide

and from coarse to fine as necessary to maintain the target

error bound. Error and depth step are computed by directly

measuring pixel motion in the images.
z ⇐ zn ear

w h ile z ≤ zfar do

compute matching scores for depth plane z
and store in cost volume

∆z ⇐ compute depth step

w h ile error(z + ∆z) > εz and baseline ≤ (z + ∆z)β
do

increase baseline

∆z ⇐ recompute depth step

end w h ile

w h ile error(z + ∆z) > εz and resolution < finest do

increase resolution (pyramid level)

∆z ⇐ recompute depth step

end w h ile

z ⇐ z + ∆z
end w h ile

compute depthmap from cost volume

the camera centers, the projection of the image border poly-

gon remains convex, and we only need to measure at the

vertices of the projected and clipped image border polygon,

which bounds the measurements of all interior points.

Algorithm 1 describes our method. The plane-sweep be-

gins with the narrowest baseline and coarsest resolution. As

the sweep moves from near to far, the baseline and reso-

lution (pyramid scale) increase from narrow to wide and

from coarse to fine as necessary to maintain the target error

bound. O nce the full image resolution is attained, the plane-

sweep can continue with increasing baselines, but the error

bound will no longer be met. Matching scores are computed

at each depth and stored in a cost volume, from which an

optimized surface is then extracted. Depth error and depth

step are computed by measuring pixel motion directly.

In our method we compare matching costs computed at

different baselines and resolutions and expect that the min-

imum score indicates the correct match. For multiple base-

lines, we expect this to be true based on the brightness

constancy constraint. Although appearance changes are a

known problem in wide baseline matching, our method is

not wide baseline since the angle of triangulation is kept

approximately constant and relatively small. In Figure 2 ,

we show an example of matching costs computed from var-

ious resolutions and baselines. This figure shows that the

cost minimum is roughly the same for all cost functions.

We have evaluated this for a variety of scenes and pixels

and found the same general behavior in all of them.

Figure 2 . Matching cost functions for varying baselines (left) and

resolutions(right). Cost minima are roughly the same value at

different resolutions and baselines, which makes stereo matching

possible across different resolutions and baselines.

Figure 3 . We compared standard stereo and our algorithm against

a scene for which ground truth was acquired with a laser range

finder. The depth of the wall ranges from 7 to 12 meters. Top:

Some original images. Bottom L eft: Standard deviation from

ground truth w.r.t. depth. The error of standard stereo increases

with depth while the error of our algorithm remains roughly con-

stant. Bottom R ight: Absolute error images (darker means larger

error).

5 . Results

We have evaluated our method and standard stereo

against a scene for which ground truth was acquired with

a laser range finder. The scene, shown in Figure 3 , is simple

by design, so that the focus is depth accuracy, not match-

ing accuracy. The scene features a slanted brick wall which

ranges from 7 to 12 meters in depth. For our method, we

set εz = 10cm and β = ta n 10◦ (i.e. 10◦ angle of triangu-

lation). To evaluate error w.r.t. depth, we divided the com-

puted depths into bins spaced 25cm apart, and computed the

standard deviation of the (signed) difference from ground

truth. As expected, the error in standard stereo grows with

depth, whereas the error from our method remains constant.

Note that our target accuracy is 10cm, whereas the aver-

age standard deviation is 5cm, from which we can deduce

the standard deviation of the correspondence error εd is 0.5
pixels (see equation (2 )).

Next we have evaluated our algorithm on challeng-



Figure 4. F irst R ow: Some original images. The middle image is the reference view. S econd R ow, L eft: Depthmap and 3 D model

views computed using standard stereo. S econd R ow, R ight: Depthmap and 3 D model views computed using our method. B ecause the

correspondence accuracy is similar for both methods, the full views of the depthmaps appear similar. However, a close-up view of the

standard stereo depthmap at the far range reveals the poor depth accuracy. In contrast, the close-up view of the depthmap computed using

our method is much smoother, the indentations from the windows are more defined, and consequently the 3 D model views are much

cleaner, especially in the far range.

(a) (b) (c) (d)
Figure 5 . (a): The reference view image and depthmap from our method. (b): 3 D model view from our method. (c): Close-up 3 D model

views of the far range for standard stereo and our method. (d): Geometric depth resolution plot.

ing outdoor scenes. The first scene was acquired with a

10 2 4x7 6 8 pixel video camera undergoing lateral motion

capturing at 3 0 Hz. The field of view was 40 degrees. For

this scene, we desired an accuracy of εz = 30cm, and have

found matching to be accurate at angles up to 6 degrees,

i.e. β = ta n 6◦. Given our resolution, the target accu-

racy can be maintained up to 4 5m. We used a gaussian

pyramid where the scaling factor between levels is 1/2 , and

filtered between the two nearest levels to handle variable

resolution. Depthmaps were computed using the previously

described plane-sweep, using 11 views, followed by semi-

global optimization. We have compared our results with

standard stereo, also using 11 views. For a fair comparison,

we allowed standard stereo to use the widest baseline possi-

ble, while still keeping the objects in the near range in view.

The near range in this scene is 3m which limits the baseline

to 2.5m. This baseline is in fact not sufficient to meet the

target accuracy at the far range. Except for the differences

in baseline and resolution, all other settings are the same for

both methods. The two methods are compared in Figure 4.

O ur method is more than 6 times faster, and analysis pre-

dicts that it is more than 4 times more accurate at the far

range. While no ground truth is available for this scene, the

reconstruction produced using our method is clearly many

times more accurate.

For the second result, shown in Figure 5 , we captured

a series of images with a 10 megapixel camera. We pro-

cessed the images with a target accuracy of εz = 1cm at

zfar = 6.1m, a maximum triangulation angle of 6◦, and

used 7 views for each plane. Compared to standard stereo

using the widest baseline possible, our method is more than

6 times faster, and more than 3 times more accurate at the

far range.

Again, we allowed standard stereo to use the widest

baseline possible, so long as objects in the near range are

kept in view. For the two scenes, the nearest object is 5 -

10 % of the distance to the farthest object, which we have

observed to be typical in outdoor ground-level imagery.

Note that the near range has a significant effect on stan-

dard stereo, as it limits the baseline and increases disparity

range. In contrast, this variable has negligible effect on our

method because the baseline is variable, and because these

near-range depths are processed at low resolution. For stan-

dard stereo, the resolution is insufficient to meet the target

accuracy throughout the volume. In fact, the error surpasses

εz at about 5 0 % of zfar , and grows to nearly 3 -4 times εz at

zfar . O ur method on the other hand maintains the target ac-

curacy throughout the volume, while still performing about



Scene 1 zn ear = 3m, zfar = 45m, εz = 30cm Scene 2 zn ear = 0.6m, zfar = 6.1m, εz = 1cm

Fixed1 F 1/V Fixed2 F 2 /V V ariable Fixed1 F 1/V Fixed2 F 2 /V V ariable

resolution 0 .8 Mp 1 15 .2 Mp 19 .0 0 .8 Mp 10 Mp 1 10 3 Mp 10 .3 10 Mp

# pixel comps 3 .7 6 x10
8 6 .16 3 .19 x10

1 0 5 2 3 6 .10 x10
7 1.7 5 x10

1 0 6 .6 5 5 .7 6 x10
1 1 2 19 2 .6 3 x10

9

error at zfar 1.3 2 m 4 .4 0 0 .3 m 1 0 .3 m 0 .0 3 2 m 3 .2 0 0 .0 1m 1 0 .0 1m

z where err. = εz 2 1.47 m 0 .4 8 45 m 1 45 m 3 .41m 0 .5 6 6 .1m 1 6 .1m

Figure 6 . This table compares our algorithm, V ariable, to two versions of standard stereo, Fixed1 and Fixed2 . B oth Fixed1 and Fixed2 use

the widest baseline possible where the near range, zn ear is still in view. In Fixed1, the resolution is not allowed to exceed that of the actual

camera, while in Fixed2 , the hypothetical resolution is computed so that the error bound εz is met at zfar . This resolution is much too high

to be realized in practice. Compared to Fixed1, our algorithm is about 6 times faster and about 3 -4 times more accurate at zfar .

6 times faster for both scenes. Now suppose the images

were captured at a resolution sufficient for standard stereo

to meet the target accuracy. This resolution would be 10 to

2 0 times greater than that required by our method, and the

processing time would be 2 0 0 to 5 0 0 times greater. Recall

that the time complexity of both algorithms is proportional

to εz
−3, so reducing the target accuracy does not change the

relative processing time (see equations (6 ) and (9 )). Even if

we relax the target accuracy to that achieved by standard

stereo, our method is still 2 0 0 to 5 0 0 times more efficient.

K eep in mind that while the time complexity of both algo-

rithms is proportional to εz
−3, our algorithm is proportional

to zfar
3 as opposed to zfar

6, which is a dramatic improve-

ment, especially for scenes with large depth ranges.

In our experiments, we have found an angle of triangu-

lation of between 6 and 10 degrees to work best for our

scenes. L arger angles can reduce the resolution required to

meet the accuracy goal (see β in equation (8 )), but matching

is more difficult, and mismatches are more frequent.

6 . C onclusion

We have presented our V ariable B aseline/Resolution

Stereo algorithm, which varies the baseline and resolu-

tion proportionally with depth in order to maintain constant

depth accuracy throughout the reconstructed volume. This

is in contrast to traditional fixed-baseline stereo in which

the error increases quadratically with depth. O ur approach

directly addresses the accuracy and efficiency needs of an

application designer wishing to employ stereo as a measur-

ing device, and produces depthmaps which meet the desired

accuracy while requiring orders of magnitude less computa-

tion than standard stereo. We have demonstrated our algo-

rithm on real scenes in which our algorithm performs many

times more accurately and efficiently than that which is pos-

sible with standard stereo.
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