
1

Efficient 2D and 3D Facade Segmentation using
Auto-Context

Raghudeep Gadde*, Varun Jampani*, Renaud Marlet, and Peter V. Gehler

Abstract—This paper introduces a fast and efficient segmentation technique for 2D images and 3D point clouds of building facades.
Facades of buildings are highly structured and consequently most methods that have been proposed for this problem aim to make use
of this strong prior information. Contrary to most prior work, we are describing a system that is almost domain independent and
consists of standard segmentation methods. We train a sequence of boosted decision trees using auto-context features. This is
learned using stacked generalization. We find that this technique performs better, or comparable with all previous published methods
and present empirical results on all available 2D and 3D facade benchmark datasets. The proposed method is simple to implement,
easy to extend, and very efficient at test-time inference.

Index Terms— Auto-Context, Facade Segmentation, Semantic Segmentation, Stacked Generalization.

F

1 INTRODUCTION

I N this paper, we consider the problem of segmenting building
facades in an image, resp. a point cloud, into different semantic

classes. An example image from a common benchmark dataset for
this problem is shown in Fig. 1 along with a manual annotation.
Being able to segment facades is a core component of several
real world applications in urban modeling, such as thermal per-
formance evaluation and shadow casting on windows.As evident
from the example in Fig. 1, images of buildings exhibit a strong
structural organization due to architectural design choices and
construction constraints. For example, windows are usually not
placed randomly, but on the same height; a door can only be found
on the street-level, etc.

This problem is also an interesting test-bed for general-
purpose segmentation methods that also allow strong architectural
prior. As a result, it appears reasonable to assume that methods
which incorporate such high-level knowledge will perform well
in doing automatic facade segmentation. Following this, existing
facade segmentation methods use complex models and inference
technique to incorporate high-level architectural knowledge for
better pixel-level segmentation. Some examples are Conditional
Random Field (CRF) models that use higher-order potential func-
tions [1, 2]. Another route are grammar-based models that include
generative rules [3, 4, 5] and try to infer the choice of production
rules at parse time from the image evidence.

Contrary to the philosophy of existing methods, we largely ig-
nore domain-specific knowledge. We describe a generic segmenta-
tion method that is easy to implement, has fast test-time inference,
and is easily adaptable to new datasets. Our key observation is that
very good segmentation results can be achieved by pixel classifi-
cations methods that use basic image features in conjunction with
auto-context features [6]. In this work, we develop a simple and
generic auto-context-based framework for facade segmentation.
The system is a sequence of boosted decision tree classifiers,

• Raghudeep Gadde and Renaud Marlet are with Université Paris-Est,
LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, France.

• Varun Jampani is with MPI-IS, Germany.
• Peter Gehler is with BCCN, University of Tubingen and MPI-IS, Germany.
• The first two authors have contributed equally to this work.

that are stacked using auto-context [6] features and learned using
stacked generalization [7]. We stack three pixel classifiers using
auto-context features for images and two classifiers for 3D point
clouds. Fig. 1 shows an example segmentation result for various
classification stages of our method. As can be seen in the visual
result of Fig. 1, the segmentation result is successively refined
by the auto-context classifiers, from their respective previous
stage result. Using pixel-level classifiers along with generic image
features has the advantage of being versatile and fast compared
to existing complex methods. The entire pipeline consists of
established components and we consider it to be a baseline method
for this task. Surprisingly, our auto-context based method, despite
being simple and generic, consistently performs better or on par
with existing complex methods on all the available diverse facade
benchmark datasets in both 2D and 3D. Moreover, the presented
approach has favourable runtime in comparison to existing ap-
proaches for facade segmentation. Therefore, this approach defines
a new state-of-the-art method in terms of empirical performance. It
is important to note that by proclaiming so, we are not invalidating
the use of existing methods, that make of domain-knowledge,
for facade segmentation. Experiments suggest that more domain-
specific models would benefit from better unary predictions from
our approach. Moreover our findings also suggest that previous
methods need to be carefully re-evaluated in terms of a relative
improvement compared to a method like the proposed one.

A pixel or point-wise facade classification might not be a
desired output for some applications. For instance, high level
structural information is needed to construct Building Information
Models (BIMs). We show how the pixel predictions we obtain can
be used in a inverse procedural modeling system [4] that parses
facade images. These rules are of interest in different applications
and we show that an improved pixel-wise predictions directly
translates into a better facade parsing result.

This paper is organized as follows. Related work is discussed
in Section 2, followed by a detailed description of the auto-
context segmentation setup in Section 3. Section 4 contains the
experimental results and we conclude in Section 5.

ar
X

iv
:1

60
6.

06
43

7v
1 

 [
cs

.C
V

] 
 2

1 
Ju

n 
20

16



2

Input Image

Detection

GT

Stage-1

Stage-1 Result

Image
Features

Stage-2

Stage-2 Result

Context
Features

Stage-3

Stage-3 Result

Context
Features

Fig. 1. Schematic of different components in our facade segmentation pipeline with a sample facade from ECP dataset [8]. ‘Image’ and ‘Context’
features correspond to features extracted on input image and previous-stage segmentation result respectively. ‘Stage-n’ refers to the nth stage
auto-context classifier. The segmentation result is successively refined by the auto-context classifiers from their respective previous stage result.

2 RELATED WORK

Facade segmentation approaches can be broadly classified into
two categories: bottom-up methods [9, 2, 1, 10] that use pixel-
level classifiers in combination with CRF models and top-down
methods [4, 3, 5, 11, 12] that use shape grammars or a user
defined shape prior. The shape grammar methods seek to parse a
facade in terms of a set of production rules and element attributes,
thus segmenting the facade into semantic regions. The central idea
is to represent the facade using a parse tree and search for the
grammar derivation that best matches a pixel-level classification
of an image. The high structural organization of facades due to
architectural design choices make such a generative approach a
natural model candidate. However it is not easily amendable to
efficient inference, which often leads to inefficient and sub-optimal
segmentation results. Furthermore, due to the strong prior that a
grammar imposes, they are not necessarily pixel-wise accurate.
As a consequence, the state-of-the-art methods in terms of pixel
accuracy are dominated by the bottom-up methods, although they
do not provide structured information as in a parse tree.

In [9, 13], a three-layered system is proposed. A first layer
uses a recursive neural network to obtain pixel label probabilities,
which are fed into a grid CRF model in a second layer along
with object detections. The third layer enforces weak architectural
principles in facades as post-processing. This setup combines
high-level and low-level information into a single prediction.
The runtime of this system is mentioned in [10] to be about 2
minutes for an image of size 500 by 300. Other approaches [1, 2]
incorporate architectural knowledge in a single CRF framework
using higher-order potential functions. The method of [1] pro-
poses a hierarchical CRF framework to encode inter-class location
information in facades. The work of [2] uses long-range pairwise
and ternary potentials to encode the repetitive nature of various
class regions. Both methods require specific inference techniques
that result in non-negligible runtimes. The approach of [10] is
to use a sequence of dynamic programming runs that search for
optimal placement of window and balcony rows, door location
and others. Every single step is very fast and the overall system
is mostly global optimal. The downside is that the sequence and
type of classifications needs to match facade architecture type.
[12] employ a user-defined shape prior (an adjacency pattern) for
parsing rectified facade images and formulates parsing as a MAP-
MRF problem over a pixel grid.

Recently, techniques have been introduced for facade under-
standing and modeling in 3D [14, 15]. The 3D point cloud or
meshes that these methods operate on are constructed using 2D
images captured from multiple viewpoints. A standard way to
label a 3D mesh or a point cloud, is to label all the overlapping
images used for reconstructing the 3D model and then fuse the
2D predictions to obtain a consistently labeled 3D model [16, 17].
The work of [14] proposed a fast technique to segment 3D facade
meshes by exploiting the geometry of the reconstructed 3D model.
To label a mesh face, their approach selects a single 2D image
(from the set of images used for reconstruction) that best captures
the semantics. The speed of this technique comes at the cost
of performance. The method of [15] implements a three-stage
approach to label point clouds of facades directly in 3D. First,
features on 3D points are computed and are classified into various
semantic classes. Next, facades belonging to different buildings
are separated based on previously obtained semantics. Finally,
weak architectural rules are applied to enforce structural priors,
leading to marginal improvements in performance (0.78% IoU)
compared to the inital classifier predictions.

All the discussed methods build on top of semantic label
probabilities which are obtained using pixel/point classifiers. It is
only after those have been obtained that architectural constraints
are taken into account. In the system we describe in this paper, 2D
or 3D segmentations are obtained only using image or point cloud
auto-context features without resorting to any domain specific
architectural constraints. As a result, several above mentioned
domain-specific approaches would benefit from using the seg-
mentation label probabilities obtained with our proposed domain-
independent approach.

The closest to our work are [18] and [19], which also proposed
auto-context based methods for facade segmentation. [18] incor-
porated auto-context features in random decision forests where the
classification results from top-layers of trees are used to compute
auto-context features and are then used in training the lower layers
of the trees in the forest. More recently, [19] proposed to use the
local Taylor coefficients computed from the posterior at different
scales as auto-context. Although [18] and [19] are conceptually
similar, the method we propose uses different low-level features,
different auto-context features and different learning techniques
achieving better performance on benchmark datasets.



3

3 AUTO-CONTEXT SEGMENTATION

We propose an architecture that combines standard segmentation
methods into a single framework. Boosted decision trees are
stacked with the use of auto-context [6] features from the second
layer onward. This system is then trained using stacked generaliza-
tion [7]. We will describe the ingredients in the following, starting
with the segmentation algorithm (Sec. 3.1), the feature represen-
tation for images (Sec. 3.2) and for point-clouds (Sec. 3.3), auto-
context features (Sec. 3.4), and the training procedure (Sec. 3.5).

Given a point cloud or an image I , the task of semantic
segmentation is to classify every point or pixel i into one of C
classes ci ∈ {1, . . . , C}. During training, we have access to a
set of N class-annotated images each with a variable number
of points/pixels: (Iji , c

j
i ), j = 1, . . . , N . We will comment on

the loss function in the experimental section and for now treat
the problem as one that decomposes over the set of pixels. Two
different feature sets are distinguished, data-dependent features
fi ∈ RDf that are derived from the spatial and color observations
in a point cloud or image, and auto-context features ai ∈ RDa

based on the prediction results from previous stages.

3.1 Model Architecture
Our system consists of a sequence of classifiers as suggested
in [6]. A schematic overview of the pipeline is depicted in Fig. 1.
At every stage t, the classifier has access to the image and to
predictions of all earlier stages. Formally, at stage t > 1 and
at each pixel i, a classifier F t maps image (I) and auto-context
features (ai) to a probability distribution P t of the pixel class
assignments

F t
(
fi(I), ai(P

t−1)
)
7→ P t(ci|I),∀i. (1)

For pixel classifier F t, we use boosted decision trees that store
conditional distributions at their leaf nodes. In general, the output
of F t need not be a distribution. The first stage t = 1 depends
only on the features F 1(fi(I)) derived directly from the image.
The setting is identical for point clouds.

This architecture is a conceptually easy and efficient way to
use contextual information in pixel-level classification. Classifiers
of later stages can correct errors that earlier stages make. An
example sequence of predictions can be seen in Fig. 1. For
example, an auto-context feature can encode the density of a
predicted class around a pixel. The classifier can learn that certain
classes only appear in clusters which then allows to remove
spurious predictions. This has a similar smoothing effect as some
pairwise CRF models have, but with the benefit of a much faster
inference.

3.2 Image Features
As image features, we computed 17 TextonBoost filter re-
sponses [20], location information, RGB color information, dense
Histogram of Oriented Gradients [21], Local Binary Pattern fea-
tures [22], and all filter averages over image rows and columns at
each pixel. These are computed using the DARWIN [23] toolbox.

In addition to the above generic segmentation features, we
include detection scores for some specific objects. Follow-
ing [9, 24, 25], we use detectors for windows as well as doors.
Whereas [9, 24] fused the detection scores into the output of
the pixel classifiers, we turned the detection scores into image
features at every single pixel. We use the integral channel features
detector from [26] for which a toolbox is available [27]. For a

(a) Facade (b) Detection
Fig. 2. (a) A facade and (b) its window detection scores. Bright and dark
regions correspond to high and low detection scores respectively.

given image, the detector outputs a number of bounding boxes
along with a corresponding score for each bounding box. We
sum up the scores to get a single detection score at each pixel.
Object detection parameters are automatically estimated using the
training data to get a good recall. Fig. 2 shows an example window
detection output for a sample facade image. The detection feature
is of course a problem dependent one and based on the prior
knowledge about the special classes: door and windows. However
it is still a generic feature in the sense that the prior information is
extremely weak and a generic detection system has been used to
obtain it. Moreover, door and window classes are common to any
architecture of facades. In the end, 761 low-level image features
coupled with 2 door and window detection features make a total
of 763 feature values at each pixel.

3.3 Point Cloud Features

We use the same set of features as [15] to describe a point
cloud. The features inlude the mean RGB color values, their
corresponding LAB values, the estimated normal at the 3D point,
the spin image descriptor [28], the height of a point above an
estimated groud plane, the depth of the point from an estimated
facade plane and the inverse height of the point which is the
distance from the uppermost point of the facade in the direction
of the gravity vector. The combination of all these features form a
132-dimensional vector for every point.

3.4 Auto-context Features

In addition to the image features, the classifiers from stage t > 1
can condition on statistics computed from previous predictions.
We include the auto-context features ai that are computed from
predictions of the previous classifier P t−1(·|I) only. For every
pixel i we compute the following auto-context features of length
14C + 1, where C is the number of classes.

Class probability: The probability P t−1(ci|I). (length C).

Entropy: The entropy of P t−1(·|I). This feature quantifies the
ambiguity of the t− 1 stage prediction (length 1).
Row and column scores: We compute the percentage of
predicted classes in the row and column of pixel i. Along with
this percentage, we compute the average score of all pixels in
the same row and column as i (length 4C).
Distance to the nearest class: Both Euclidean and Manhattan
distances to the nearest class pixel are computed as features



4

(length 2C).
Class color model: For every class c we fit, with maximum
likelihood, a Gaussian distribution to the RGB values of all
pixels that are being predicted to be of class c. To be more
robust, we fit the distribution only to pixels with probabilities
greater than the 3rd quartile. For every pixel, we then calculate
the log-likelihood for all classes (length C).
Bounding box features: For every class, we fit a rectangular
bounding box to every connected component of MAP
predictions. For every pixel we compute a C dimensional
vector with the c’th component being a 1 or 0 depending on
whether it lies inside or outside of a box for class c. A variant
of this feature is to compute the average class probability inside
the box. This feature aims to improve the segmentation of
rectangular objects such as doors and windows (length 2C).
Neighborhood statistics: For every pixel, the average class
probability is computed in a 10× 5 region above and below the
pixel; and also in a 5 × 10 region left and right to that pixel
(length 4C).

In the case of point clouds, we use only the class probabilities
and the entropy of the class probabilities as auto-context features.
So, for point clouds the size of the auto-context features is C +1.

3.5 Stacked Generalization

We train the sequence of classifiers using stacked generaliza-
tion [7]. The training data is split in M folds and at each stage,
M different models are trained using data from M −1 folds, with
one fold held out. The M models are used to obtain prediction
on the held out fold, this results in a set of cross-validation
predictions. It is from these predictions that the auto-context
features for training are computed. The next stage classifier is
trained subsequently, in the same manner. For every stage, one
additional classifier is trained using the entire training data (all M
folds) that is used during test-time inference. In our experiments,
to segment 2D images we divide the training set into four folds
(M = 4) and for 3D point clouds, we do not use the stacked
generalization (M = 1) due to the availability of fewer training
points. We use three classification stages for 2D images and only
two classification stages for 3D point clouds, as we observe that
the performance levels out after that.

Thus, instead of using single classifier in each stage, the auto-
context features are computed using predictions from different
classifiers, different also from the classifier that will be used at
test time. The reason for this procedure is to obtain features that
are not computed on training predictions and thus avoid to overfit
to the data. This procedure is a standard strategy and is found to
be stable and well performing in many scenarios, e.g. [29].

For training and testing, we used the DARWIN toolbox [23].
The maximum tree-depth of each boosted decision tree classifier
is set to two and we used a maximum of 200 boosting rounds.

4 EXPERIMENTS

We evaluate the auto-context pipeline on all seven benchmark
datasets that are available for the problem of facade segmen-
tation. For all datasets except LabelMeFacade [30] and Rue-
Monge2014 [14] datasets, we report five fold cross-validation
results, the standard protocol used in the literature. One fold
cross-validation is done for LabelMeFacade and RueMonge2014

datasets as the train and test data splits are pre-specified for these
datasets. We compare against all recent best performing methods.

As performance measures, we use the overall pixel-wise clas-
sification accuracy, the accuracy averaged over the classes and
the intersection over union (IoU) score, popularized by the VOC
segmentation challenges [31]. The IoU score is a higher-order
loss function and Bayes optimal prediction requires dedicated
inference techniques. For simplicity, we report MAP predictions
for all pixels and evaluate all three measures on this prediction
as done in the literature concerning these datasets. The three
measures are defined as follows in terms of false positives (FP),
true positives (TP), and false negatives (FN).

• Overall Pixel Accuracy: “TP / (TP + FN)” computed over
entire image pixels of all classes.

• Average Class Accuracy: Pixel accuracy computed for all
classes separately and then averaged.

• Intersection Over Union Score (IoU): “TP / (TP + FN + FP)”
computed on every class and then averaged.

The performance differences are tested for statistical signifi-
cance. We used a paired t-test with one tail and p < 0.01.

4.1 Datasets

ECP Dataset. The ECP dataset [8] consists of 104 rectified facade
images of Hausmannian architectural buildings from Paris. For
five-fold cross validation, we randomly divide the training data
into 4 sets of 20 images and 1 set of 24 images as in [9]. There
are seven semantic classes in this dataset.
Graz Dataset. This dataset [3] has 50 facade images of various
architectures (Classicism, Biedermeier, Historicism, Art Nouveau)
from buildings in Graz. There are only four semantic classes, and
the data is divided into 5 equal sets for cross-validation.
eTRIMS Dataset. The eTRIMS dataset [32] consists of 60 non-
rectified images. Facades in this dataset are more irregular and
follow only weak architectural principles. Again, we split the data
into 5 equal sets for cross-validation.
CMP Dataset. This dataset, proposed in [2], has 378 rectified
facades of diverse styles and 12 semantic classes in its base set.
We divided the data into 4 sets of 75 images each and one set of
78 images for cross-validation.
LabelMeFacade Dataset. Introduced in [30], this dataset has
100 training and 845 testing facade images taken from LabelMe
segmentation dataset [33]. Facades in this dataset are highly
irregular with a lot of diversity across images.
ENPC Art-deco dataset. This dataset, first used in [34], contains
79 rectified and cropped facade images of the Art-deco style
buildings from Paris. Similar to the ECP dataset, the images in
this dataset are segmented into seven semantic classes.
RueMonge2014 Dataset. This dataset, introduced in [14], is
aimed towards providing a benchmark for 2D and 3D facade
segmentation, and inverse procedural modeling. It consists of 428
high-resolution and multi-view images of facades following the
Haussmanian style architecture, a reconstructed point cloud, a
reconstructed mesh and a framework to evaluate segmentation
results. Three tasks are proposed on this dataset in [14, 15] 1.
The first task is the standard image labeling task where each pixel
has to be assigned a semantic label. The second task is the mesh
labeling task where a semantic label has to be assigned to each
face of a given mesh. And the third task is the point cloud labeling

1. http://varcity.eu/3dchallenge/

http://varcity.eu/3dchallenge/


5

Doo
r

Sho
p

Balc
on

y

W
ind

ow
W

all Sky Roo
f

Ave
ra

ge

Ove
ra

ll
IoU

[9] 60 86 71 69 93 97 73 78.4 85.1 -

[13] 58 97 81 76 90 94 87 83.4 88.1 -

[10] 79 94 91 85 90 97 90 89.4 90.8 -

[12] 79 97 91 87 90 97 91 90.3 91.3 -

ST1 76 88 86 77 92 97 87 86.0 88.9 75.3

ST2 79 90 89 81 92 98 88 88.3 90.5 78.6

ST3 80 92 89 82 92 98 88 88.8 90.8 79.3

PW1 78 91 86 77 93 98 88 87.3 90.0 77.6

PW2 80 92 89 81 93 98 89 88.9 91.1 79.9

PW3 81 93 89 82 93 98 89 89.5 91.4 80.5

Pa
rs

in
g [4] 47 88 58 62 82 95 66 71.1 74.7 -

[5] 50 81 49 66 80 91 71 69.7 74.8 -

ST3+ [4] 64 90 71 76 93 96 77 81.0 85.2 72.4

Fig. 3. Segmentation results of various methods on ECP dataset. ST1,
ST2, and ST3 correspond to the classification stages in our auto-context
method. PW1, PW2, and PW3 refer to a Potts CRF model over the
classification unaries. Published results are also shown for comparisons.
The parsing results of the reinforcement learning method [4] when using
the output ST3 result are reported in the last row.

task where a semantic label has to be assigned to each point in
the point cloud. For each of the tasks, fixed splits in training and
testing sets are pre-defined. The ground-truth labeling consists of
seven semantic classes, same as in the ECP dataset.

4.2 Results on Single-view Segmentation
The empirical results on different datasets are summarized in
Fig. 3 for the prominent ECP dataset and in Fig. 4 for the
remaining datasets, where ST1, ST2, and ST3 correspond to the
classification stages in the auto-context method. In addition to the
pixel-wise predictions of the auto-context classifiers, we evaluated
a CRF with an 8-connected neighbourhood and pairwise Potts
potentials. The single parameter of the Potts model (weight for all
classes set to equal) was optimized to yield the highest accuracy
on the training set (thus possibly at the expense of losing a bit of
performance compared to a cross-validation estimate). Inference
is done using alpha expansion implemented in DARWIN [23].
The results of the Potts-CRF on top of the unary predictions of
different staged auto-context classifiers are referred to as PW1,
PW2, and PW3.

The first observation we make is that the use of a stacked
auto-context pipeline improves the results on all the datasets. On
the ECP dataset, the improvement is 1.9% in terms of overall
pixel accuracy for a three-stage classifier (ST3) compared to
single-stage classifier (ST1). The ordering in terms of statistically
significant performance is ST3>ST2>ST1 on the ECP, CMP,
Art-deco and LabelMeFacade datasets and ST3=ST2>ST1 on
eTrims and Graz datasets. The auto-context features are frequently
selected from the boosted decision trees. For the ECP dataset,
about 30% of the features in stage 2 and 3 are auto-context features
(CMP 46%, eTrims 31%, and Graz 11%). We didn’t notice any
significant differences or trends regarding the type of auto-context
features picked by the boosted decision trees for different datasets.

The next observation on the ECP dataset is that the overall
accuracy of ST3, with 90.8%, is comparable with the reported
91.3% from the current best performing method [12]. The CRF-
Potts model (PW3) achieves higher accuracies than the method
of [12], making it the (although only marginally) highest published

[9] [10] [19] [12] ST1 ST2 ST3 PW3

Average 65.3 65.9 66.4 66.0 74.0 76.8 76.7 78.1
Overall 83.2 83.8 83.4 83.5 84.7 86.0 86.1 87.3
IoU - - - - 58.7 61.3 61.5 63.5

(a) eTRIMS dataset

[2] ST1 ST2 ST3 PW3

Average 47.5 40.5 47.0 48.7 48.9
Overall 60.3 61.8 65.5 66.2 68.1
IoU - 29.3 34.5 35.9 37.5

(b) CMP dataset

[3] [12] ST1 ST2 ST3 PW3

Average 69 83.5 79.5 82.4 82.4 82.6
Overall 78 92.5 90.2 91.1 91.2 91.7
IoU 58 - 71.3 73.3 73.3 74.4

(c) Graz dataset

[18] [35] ST1 ST2 ST3 PW3

Average 56.6 - 47.3 49.2 49.8 49.0

Overall 67.3 71.3 71.5 72.9 73.5 75.2
IoU - 36.0 37.0 38.7 39.4 39.6

(d) LabelMeFacades dataset

[34] [12] ST1 ST2 ST3 PW3

Average 72.9 83.8 80.8 84.0 84.3 84.8
Overall 78.0 88.8 85.9 88.1 88.3 89.0
IoU 58.0 - 68.3 72.0 72.4 73.5

(e) Art-deco dataset

Fig. 4. Segmentation results on various 2D datasets. ST1, ST2, and ST3
correspond to the classification stages in the auto-context method. And
PW3 refer to a Potts CRF model over ST3 as unaries.

result on the ECP dataset. The results of the auto-context classifier
are significantly higher on the other datasets, except in the Graz
dataset, when compared to the methods of [3, 10, 9, 2, 18, 35,
19, 12]. On the eTRIMS, CMP and LabelMeFacades datasets,
even the first stage classifier produces better predictions than the
previous approaches. The methods of [3, 10, 9, 2, 12] all include
domain knowledge in their design. For example, the system of [10]
is a sequence of dynamic programs that include specific domain
knowledge such as that balconies are below windows, that only
one door exists, or that elements like windows are rectangular
segments. [12] uses hand-written adjacency patterns to limit the
possible transitions between different states based on the semantic
classes. On the ECP dataset, the authors of [10] and [12] observe
respectively, an improvement of about 4% (personal communica-
tion) and 1.3% over their unary classifiers accuracy; we conjecture
they also may improve the predictions of ST3.

The methods of [3, 10, 9, 2, 18, 35] use different unary
predictions and therefore may profit from the output of the auto-
context classifier. Unfortunately, the respective unary-only results
are not reported, so at this point it is not possible to estimate
the relative improvement gains of the methods. The fact that a
conceptually simple auto-context pipeline outperforms, or equals,
all methods on all published datasets suggests that a more careful
evaluation of the relative improvements of [3, 10, 9, 2, 18] is
required.

On all the datasets, we observe that the Potts model is im-
proving over the results from the auto-context stages ST1, ST2,
and ST3 (p < 0.01). This suggests that some local statistics are



6

(a) ECP (b) eTRIMS (c) Graz

(d) CMP (e) ArtDeco

(f) RueMonge2014 (g) LabelmeFacades

Fig. 5. Sample segmentation visual results on different 2D facade
datasets (best viewed in color and more in supplementary).

Method Features AC-Features ST1 ST2 ST3 PW [9] [10] [12]

Time (s) 3.0 0.6 +0.04 +0.64 +0.64 +24 +110 +2.8 +30

Fig. 6. Average runtime for various methods on a single image of the
ECP dataset. ‘Features’ correspond to low-level and object detection
image features (computed once). ‘AC-Features’ corresponds to Auto-
Context features. The classifier runs at 0.04 seconds, every stage
needs to additionally compute AC features. A Potts model using alpha
expansion takes on average 24s. Inference times (excluding unary com-
putation) of existing methods are also shown for comparison.

not captured in the auto-context features; more local features may
improve the auto-context classifiers. In practice, this performance
gain has to be traded-off against the inference time of alpha-
expansion which is on average an additional 24 seconds for
an image from the ECP dataset. Some example visual results
(ST3) are shown in Fig. 5 for different datasets and in Fig. 10
for different classification stages. All the results for comparison
purpose are publicly available at http://fs.vjresearch.com.

The average runtime of the system on 2D images is summa-
rized in Fig. 6. These numbers are computed on an Intel Core(TM)
i7-4770 CPU @ 3.40 GHz for a common image from the ECP
dataset (about 500×400 pixels). All the extracted features are
computed sequentially one after the other. Fig. 6 also indicates
that the proposed approach has favourable runtime in comparison
to existing prominent methods.

4.3 Results on Multi-view Segmentation

In this section, we present semantic segmentation results of
multi-view scenes using 2D images and 3D point clouds from
the RueMonge2014 dataset [14]. The dataset details are already
presented in Sec. 4.1. Similar to [15], we show results using only
2D images, only the 3D point cloud and combined 2D+3D data for
the tasks of image labeling and point cloud labeling. Additionally,
we present results for the mesh labeling task by projecting the
image segmentation results and point cloud segmentation results
on to the mesh faces.

Here, we first apply the proposed auto-context technique,
separately on 2D images and 3D point cloud to measure the
relative gains. We find improvements in both 2D and 3D, similar
to the results on the single view datasets. For 2D images, the
performance levels out after three stages, while for 3D point
clouds, the performance levels out after two stages. This can
be due to fewer auto-context features and less training data
for 3D point clouds. The publicly available 3D point cloud in
the RueMonge2014 dataset has only 290196 training points and
276529 test points.

Next, we compare our results with the best performing tech-
niques on these tasks. All the results are summarized in Fig. 7.
For all our experiments in 2D, we used the specified training set
of 119 images along with ground truth, and evaluated on 202 test
images. For the image labeling task, using only 2D images, we
perform better (by +2.9% IoU) and faster (by at least a factor
of 3) compared to [9]. Note that our runtimes shown in Fig. 7
are computed by applying the proposed technique sequentially
on all the 202 test images. This can be easily parallelized by
performing the segmentation on all the test images in parallel.
Similar improvements in performance are observed in the image
labelling task when using only 3D point cloud data as well.
Here, the image labeling is performed by back-projecting the
semantically-labeled 3D point cloud onto 2D images.

For the point cloud labeling task, using either only 2D or 3D
data, we observe better segmentation results compared to [15].
We note that all improvements are obtained without explicitly
modeling structural priors or any other type of domain knowledge.
[15] proposed to use weak architectural principles in 3D on top of
initial segmentations that come from a simple classifier. Such weak
architectural principles have shown only a marginal improvement
of +0.15% in IoU. In contrast, when using only 3D data, the
ST2 result of the proposed auto-context technique performs better
by +1.5% in IoU, and improves even further by applying a
pairwise Potts model. Note that, in this case, we use exactly the
same 3D features as [15] for the first stage classification. This
renders the results of weak architectural principles in [15] and
the proposed auto-context features directly comparable. We also
obtain favorable runtimes. It takes 8 minutes to enforce the weak
achitectural principles but less than a minute to apply another stage
of auto-context.

[14] 2D 2D+3D

ST1 ST2 ST3 PW3 ST3 ST4 PW4

Average - 71.6 72.5 72.2 72.2 73.2 79.9 80.0
Overall - 81.7 82.3 82.5 82.8 84.4 84.1 84.4
IoU 41.9 57.8 59.0 58.7 58.8 60.9 63.2 63.7
Runtime (min) 15 31 60 89 121 89 118 150

Fig. 8. Results for mesh labeling task on the RueMonge2014 dataset.

Next, similar to [15], we combine the segmentation results
of 2D images and 3D point clouds for further improving the
performance (‘2D+3D’ in Fig. 7). For this, we accumulate the ST3
and ST2 results of 2D images and 3D point cloud respectively.
Further applying auto-context (ST4) on the accumulated unaries
boosts the IoU performance by another 2.1% in labeling the point
cloud, while it levels out in labeling the images. Additionally,
applying a pairwise Potts CRF model similar to [15] to enforce
smoothness, further increases the IoU performance by 0.7% and
0.2% in labeling the images and point cloud respectively. In

http://fs.vjresearch.com


7

2D 3D 2D+3D

[9] ST1 ST2 ST3 PW3 [14] [15]-3 ST1 ST2 PW2 [15]-5 [15]-7 ST3 ST4 PW3 PW4

Average - 72.6 72.8 72.7 73.7 - - 68.0 67.8 68.3 - - 74.2 77.9 74.4 79.0
Overall - 79.1 79.4 80.0 81.2 - - 78.2 82.0 82.3 - - 82.7 80.9 83.4 81.9

IoU 57.5 58.1 58.4 58.9 60.5 41.3 53.2 54.3 56.3 57.0 61.3 62.0 62.0 61.2 62.7 62.7

Runtime (min) 379 27 56 85 117 15 21 19 19 20 324 404 85 114 117 146

(a) Image labeling

2D 3D 2D+3D

[9] [15]-1 [15]-2 ST1 ST2 ST3 PW3 [14] [15]-3 [15]-4 ST1 ST2 PW2 [15]-5 [15]-6 ST3 ST4 PW4

Average - - - 70.8 71.9 72.6 72.7 - - - 63.7 68.0 68.5 - - 73.3 75.4 75.3

Overall - - - 79.3 80.9 81.6 82.1 - - - 78.8 77.9 78.6 - - 84.3 84.4 84.7
IoU 56.1 55.7 55.4 55.7 57.1 58.2 58.6 42.3 52.1 52.2 51.3 53.6 54.4 60.1 60.8 60.6 62.7 62.9
Runtime (min) 382 302 380 28 57 86 118 15 15 23 15 15 16 317 325 86 86 87

(b) Point Cloud labeling
Fig. 7. Segmentation results of various methods for the tasks of (a) image labeling and (b) point cloud labeling on the RueMonge2014 dataset.
In the following, L1 and L2 represent the first and second layers of [9]. RF refers to the random forest classifier in [15]. 3DCRF refers to a Potts
model-based CRF defined on 4-nearest neighbourhood of the point cloud. 3DWR refers to weak architectural principles from [15]. The headings are
defined as [15]-1 = L1+3DCRF, [15]-2 = L1+3DCRF+3DWR, [15]-3 = RF+3DCRF, [15]-4 = RF+3DCRF+3DWR, [15]-5 = RF+L1+3DCRF, [15]-6
= RF+L1+3DCRF+3DWR, and [15]-7 = RF+L2. The runtimes shown here, in minutes, include the feature extraction, classification and optional
projection on the entire dataset. Note that, in case of 2D, the specified runtimes are the time taken to segment all 202 test images sequentially.

summary, as evident in Fig. 7, better performance than existing
state-of-the-art approaches is obtained in both image and 3D point
cloud labeling, while being 2-3 times faster. A visual result of 3D
point cloud segmentation is shown in Fig. 9

Finally, we compare our results with existing approaches
on the mesh labeling problem. To label meshes, the 2D image
segmentation results are projected onto the mesh faces. 2D seg-
mentation results obtained with only 2D images and with both
2D+3D data are used for mesh labeling. See Fig. 8 for quantitative
results and Fig. 9 for a visual result. Again we observe similar
improvements with auto-context classifiers. Our simple majority
voting scheme to project the semantics from 2D images to 3D
mesh shows that we perform significantly better (by +17.4% IoU)
in comparison to the existing approach from [14]. However this
comes at a cost of runtime (6 × slower). The result of earlier
stages of our auto-context technique still performs better, ‘ST1’
for example, by +15.9% with a comparable runtime. In [14],
3D information is used to reduce redundant evaluations, thereby
achieving faster runtime.

4.4 Inverse Procedural Modeling
A pixel-wise classification of a facade might not be the desired
input for some applications. This fact motivated shape grammar
methods [3, 36, 4, 5] that parse the facade into a high-level
structured representation. The aim of these top-down approaches
is to infer the architectural (structural) information in facades by
fitting a set of grammar rules (a derivation) to a pixel classifier
output. Such structural information can be used for retrieving
structurally similar facades, etc. We apply the parsing method
of [4] and compare against their result, that is obtained using
a random forest classifier that uses color information. All other
settings and the grammar are the same. We refer the reader to [4]
for more details about the approach. The results are shown in the
last three rows of Fig. 3. These numbers are obtained by back-
projecting the parsed representation into a pixel-wise prediction.
We observe that better pixel predictions directly translates to
better parsing results. A substantial improvement of 10.5% is
achieved, closing the gap to pixel prediction methods. This shows
the importance of good pixel predictions even for models that only

make use of them as an intermediate step. Fig. 10 shows a sample
visual result of various classification stages and the parsing result
obtained with ST3 + [4].

5 CONCLUSION

The segmentation method that we described in this paper is
a framework of established and proven components. It is easy
to implement, fast at test-time, and it outperforms all previous
approaches on all published facade segmentation datasets. It is
also the fastest method amongst all those that we compared
against. The runtime is dominated by feature computation, which
is amenable to massive speed improvements using parallelization
in case a high-performing implementation is required.

We observe on all datasets that adding stacked classifiers using
auto-context features improves the performance. This applies to
both 2D (images) and 3D (point clouds) data. For the ECP dataset,
a Potts-CRF further improves the performance but this comes at
the expense of a severe increase in runtime. Further, the proposed
technique can be applied independently to either 2D or 3D data
and also to combined 2D+3D models. For the point cloud labeling
task, on RueMonge2014 dataset, applying auto-context on the
combined 2D+3D improves the IoU performance by 1.9%.

The proposed auto-context classifier raises the bar when it
comes to absolute performance. Contrary to the popular belief
in this domain, it largely ignores domain knowledge, but still
performs better than all the methods that include prior information
in some form, for example relationship between balconies and
windows. We believe that it is important to evaluate methods
in terms of a relative improvement over strong pixel classifier
baselines. In order to facilitate a fair comparison of previous and
future work, we release all code that has been used to obtain the
reported results along with all predictions for easy comparison2.

ACKNOWLEDGEMENTS

This work was partly carried out in IMAGINE, a joint research project
between ENPC and CSTB, and partly supported by ANR-13-CORD-
0003 and ECP.

2. http://fs.vjresearch.com

http://fs.vjresearch.com


8

(a) Point Cloud (b) Ground Truth (c) ST4

(a) Mesh Surface (b) Ground Truth (c) ST4
Fig. 9. Sample visual results for the point cloud and mesh labeling tasks on the RueMonge2014 dataset (More in supplementary).

(a) Facade (b) GT (c) ST1 (d) ST2 (e) ST3 (f) PW3 (g) Parse
Fig. 10. (a) Sample facade image from ECP dataset; (b) Ground truth segmentation; and (c,d,e) Result of various classification stages of our
auto-context method. Observe that the method removes isolated predictions and recovers the second lowest line of windows. (f) Potts model on top
of ST3 result, and (g) parsed result obtained by applying reinforcement learning [4] using ST3 result.

REFERENCES

[1] M. Y. Yang and W. Forstner, “A hierarchical conditional random field
model for labeling and classifying images of man-made scenes,” in ICCV
Workshops, 2011.

[2] R. Tylecek and R. Sara, “Spatial pattern templates for recognition of
objects with regular structure,” in GCPR, 2013.

[3] H. Riemenschneider, U. Krispel, W. Thaller, M. Donoser, S. Havemann,
D. Fellner, and H. Bischof, “Irregular lattices for complex shape grammar
facade parsing,” in CVPR, 2012.

[4] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios,
“Shape grammar parsing via reinforcement learning,” in CVPR, 2011.

[5] A. Martinovic and L. Van Gool, “Bayesian grammar learning for inverse
procedural modeling,” in CVPR, 2013.

[6] Z. Tu, “Auto-context and its application to high-level vision tasks,” in
CVPR, 2008.

[7] D. H. Wolpert, “Stacked generalization,” Neural Networks, 1992.
[8] O. Teboul, “Ecole centrale paris facades database,” 2010.
[9] A. Martinovic, M. Mathias, J. Weissenberg, and L. Van Gool, “A three-

layered approach to facade parsing,” in ECCV, 2012.
[10] A. Cohen, A. G. Schwing, and M. Pollefeys, “Efficient structured parsing

of facades using dynamic programming,” in CVPR, 2014.
[11] M. Koziński, G. Obozinski, and R. Marlet, “Beyond procedural facade

parsing: Bidirectional alignment via linear programming,” in ACCV,
2014.

[12] M. Kozinski, R. Gadde, S. Zagoruyko, R. Marlet, and G. Obozinski, “A
MRF shape prior for facade parsing with occlusions,” in CVPR, 2015.

[13] M. Mathias, A. Martinović, and L. Van Gool, “ATLAS: A three-layered
approach to facade parsing,” IJCV, 2015.

[14] H. Riemenschneider, A. Bódis-Szomorú, J. Weissenberg, and
L. Van Gool, “Learning where to classify in multi-view semantic seg-
mentation,” in ECCV, 2014.

[15] A. Martinovic, J. Knopp, H. Riemenschneider, and L. Van Gool, “3d all
the way: Semantic segmentation of urban scenes from start to end in 3d,”
in CVPR, 2015.

[16] L. Ladickỳ, P. Sturgess, K. Alahari, C. Russell, and P. H. Torr, “What,
where and how many? combining object detectors and crfs,” in ECCV,
2010.

[17] J. Tighe and S. Lazebnik, “Superparsing: scalable nonparametric image
parsing with superpixels,” in ECCV, 2010.

[18] B. Fröhlich, E. Rodner, and J. Denzler, “Semantic segmentation with
millions of features: Integrating multiple cues in a combined random
forest approach,” in ACCV, 2012.

[19] C. Gatta and F. Ciompi, “Stacked sequential scale-space taylor context,”
PAMI, 2014.

[20] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost: Joint ap-
pearance, shape and context modeling for multi-class object recognition
and segmentation,” in ECCV, 2006.

[21] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005.

[22] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
PAMI, 2002.

[23] S. Gould, “DARWIN: A framework for machine learning and computer
vision research and development,” JMLR, 2012.

[24] D. Ok, M. Kozinski, R. Marlet, and N. Paragios, “High-level bottom-up
cues for top-down parsing of facade images,” in 3DIMPVT, 2012.

[25] M. Kozinski and R. Marlet, “Image parsing with graph grammars and
markov random fields,” in WACV, 2014.

[26] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral channel features.”
in BMVC, 2009.

[27] P. Dollár, “Piotr’s Computer Vision Matlab Toolbox (PMT),” http:
//vision.ucsd.edu/∼pdollar/toolbox/doc/index.html, 2014.

[28] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” PAMI, 1999.

[29] P. Gehler and S. Nowozin, “On feature combination for multiclass object
classification,” in ICCV, 2009.

[30] B. Frohlich, E. Rodner, and J. Denzler, “A fast approach for pixelwise
labeling of facade images,” in ICPR, 2010.

[31] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” IJCV, 2010.

[32] F. Korc and W. Forstner, “eTRIMS Image Database for interpreting
images of man-made scenes,” Dept. of Photogrammetry, University of
Bonn, Tech. Rep. TR-IGG-P-2009-01, April 2009.

[33] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme:
a database and web-based tool for image annotation,” IJCV, 2008.

[34] R. Gadde, R. Marlet, and N. Paragios, “Learning grammars for
architecture-specific facade parsing,” IJCV, 2016.

[35] S. Nowozin, “Optimal decisions from probabilistic models: the
intersection-over-union case,” in CVPR, 2014.

[36] N. Ripperda and C. Brenner, “Reconstruction of façade structures using
a formal grammar and RjMCMC,” in DAGM, 2006.

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

	1 Introduction
	2 Related Work
	3 Auto-Context Segmentation
	3.1 Model Architecture
	3.2 Image Features
	3.3 Point Cloud Features
	3.4 Auto-context Features
	3.5 Stacked Generalization

	4 Experiments
	4.1 Datasets
	4.2 Results on Single-view Segmentation
	4.3 Results on Multi-view Segmentation
	4.4 Inverse Procedural Modeling

	5 Conclusion
	References

