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Abstract. Obstacle avoidance is one of the most important challenges
for mobile robots as well as future vision based driver assistance systems.
This task requires a precise extraction of depth and the robust and fast
detection of moving objects. In order to reach these goals, this paper
considers vision as a process in space and time. It presents a powerful
fusion of depth and motion information for image sequences taken from
a moving observer. 3D-position and 3D-motion for a large number of
image points are estimated simultaneously by means of Kalman-Filters.
There is no need of prior error-prone segmentation. Thus, one gets a rich
6D representation that allows the detection of moving obstacles even in
the presence of partial occlusion of foreground or background.

1 Introduction

Moving objects are the most dangerous objects in many applications. The fast
and reliable estimation of their motion is a major challenge for the environment
perception of mobile systems and of driver assistance systems in particular. The
three-dimensional information delivered by stereo vision is commonly accumu-
lated in an evidence-grid-like structure [10]. Since stereo does not reveal any
motion information, usually the depth map is segmented and detected objects
are tracked over time in order to obtain their motion. The major disadvantage of
this standard approach is that the performance of the detection highly depends
on the correctness of the segmentation. Especially moving objects in front of
stationary ones – eg. the bicycle in front of the parking vehicles shown in fig-
ure 1 – are often merged and therefore not detected. This can cause dangerous
misinterpretations and requires more powerful solutions.

Our first attempt to overcome this problem was the so called flow-depth con-
straint [7]. Heinrich compared the measured optical flow with the expectation
stemming from the known ego-motion and the 3D stereo information. Indepen-
dently moving objects do not fulfil the constraint and can easily be detected.
Unfortunately, this approach turned out to be very sensitive to small errors in
the ego-motion estimation, since only two consecutive frames are considered.

Humans do not have the above mentioned problems since we simultaneously
evaluate depth and motion in the retinal images and integrate the observations
over time [11]. The approach presented in this paper follows this principle. The



Fig. 1. Typical scene causing segmentation problems to standard stereo systems.

basic idea is to track points with depth known from stereo vision over two and
more consecutive frames and to fuse the spatial and temporal information using
Kalman Filters. The result is an improved accuracy of the 3D-position and an
estimation of the 3D-motion of the considered point at the same time. The
necessary ego-motion can be computed solely from image points found to be
stationary (e.g. see [9] or [1]) or exploiting additional inertial sensors.

The mentioned accuracy improvement is already exploited by a satellite
docking system described in [8]. After an application-specific initialization, pre-
defined markers are tracked in the images of a pair of stereo cameras yielding a
very precise estimation of the relative position. In [4] Dang combines stereo and
motion to decide whether a group of points underlies the rigid motion.

In our real-time application we track about 2000 image points. So far, the best
results are obtained using a version of the KLT tracker [12] that was optimized
with respect to speed. The depth estimation is based on a hierarchical correlation
based scheme [5]. However, any comparable optical flow estimation and any other
stereo system can be used.

The paper is organized as follows: section 2 describes the system model and
the measurement equation for the proposed Kalman Filter. Section 3 studies the
rate of convergence of the considered system and presents a multi-filter system
for improved convergence. Section 4 gives practical results including crossing
objects and oncoming traffic.

2 System Description

In the following we use a right handed coordinate system with the origin on
the road. The lateral x-axis points to the left, the height axis y points upwards
and the z-axis represents the distance of a point straight ahead. This coordinate
system is fixed to the car, so that all estimated positions are given in the coordi-
nate system of the moving observer. The camera is at (x, y, z)T = (0, height, 0)T

looking in positive z-direction.



2.1 System Model

The movement of a vehicle with constant velocity υc and yaw rate ψ̇ over the
time interval ∆t can be described in this car coordinate system as

∆xc =

∫ ∆t

0

υc (τ) dτ =
υc

ψ̇




1− cos ψ̇∆t
0

sin ψ̇∆t


 .

The position of a world point x = (X,Y, Z)T after the time ∆t can be described
in the car coordinate system at time step k as

xk = Ry (ψ) xk−1 −∆xc + υk∆t

and its associated velocity vector as

υk = Ry (ψ) υk−1

with the rotational matrix around the y-axis Ry (ψ). Combining position and

velocity in the state vector x̃ = (X,Y, Z, Ẋ, Ẏ , Ż)T leads to the discrete system
model equation

x̃k = Akx̃k−1 +Bkυc + wk−1

with the state transition matrix

Ak =



Ry (ψ) | ∆tRy (ψ)

0 | Ry (ψ)




and the control matrix

Bk =
1

ψ̇




1− cos
(
ψ̇∆t

)

0

− sin
(
ψ̇∆t

)

0
0
0




.

The noise term w is assumed to be Gaussian white noise with covariance ma-
trix Q.

2.2 Measurement Model

The measurement consists of two pieces of information: the image coordinates u
and v of a tracked feature and the disparity d delivered by stereo vision working
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Fig. 2. Estimation results of the presented Kalman Filter. The considered world point
is at the initial position (10.0 m, 1.0 m, 60.0 m)T . The observer moves at a constant
speed of vz = 10 m

s
in positive z-direction (20 fps).

on rectified images. Assuming a pin-hole camera the non-linear measurement
equation for a point given in the camera coordinate system is

z =



u
v
d


 =

1

Z



Xfu
Y fv
bfu


+ ν

with the focal lengths fu and fv and the baseline b of the stereo camera sys-
tem. The noise term ν is assumed to be Gaussian white noise with covariance
matrix R.

2.3 Simulation Results

The benefit of filtering the three-dimensional measurement is illustrated by fig-
ure 2(a). It shows the estimated relative distance of a simulated static world point
measured from an observer moving at a speed of 10 m

s . The initial position of the
point is (10.0 m, 1.0 m, 60.0 m)T . White gaussian noise was added to the image
position and the disparity with a variance of 1.0 px2. The dashed curve shows
the unfiltered 3D position calculation which suffers from the additive noise. The
continuous curve gives the excellent result of the filter.

In the above example the speed of the point was correctly initialized to zero.
How does the filter perform if the point is in motion? Let us assume the point
moves at a speed of vz = 7.0 m

s in positive z-direction. Figure 2(b) shows the
estimation results of three differently initialized filters. Although very large initial
values of the P-Matrix are used, the speed of convergence is only fair. Better
results can be obtained by a multi-filter approach described in the following.



3 Multiple Filters for Improved Rate of Convergence

As shown above in figure 2(b), the closer the first guess is to the correct value,
the less time it takes until the estimate is below a given error threshold. This
strong dependency on the initial value can be overcome by running multiple
Kalman Filters initialized as different speeds in parallel, estimating the world
position and velocity using the same input data.

How can we decide which state is the best? One way is to calculate the
distance between the real measurements and the predicted measurements using
the Mahalanobis distance, also known as the normalized innovation squared
(NIS) [2]:

DM (z, x) = (z − x)Σ−1 (z − x)
>

with the measurement z, the predicted measurement x and the innovation co-
variance matrix Σ.

Alternatively, the probability density function, also called likelihood, can be
used as an indicator to decide whether a given measurement z matches a certain
Kalman Filter model. This is used for example in the interacting multiple model
estimator (IMM) [2]. However, the likelihood calculation tends to suffer from too
small floating point data types.

In order to avoid these numerical problems, we base our decisions on the
NIS criterion. Figure 3(a) shows the low pass filtered NIS values for the three
differently initialized filters of figure 2(b). It is obvious that the initialization
quality corresponds to the discrepancy in measurement space between the mea-
sured and predicted position.

Selecting one of the three (in general n) filter states as the correct one would
ignore valuable information contained in the other filters. Assuming a limited
initial state space, i.e. the tracked point has a limited absolute velocity, we
initialize the filters on different velocities including the boundaries. Consequently,
the real state must lie in between these boundaries and can be expressed as a
weighted sum

x̃ =
1∑
βi

n∑

i=0

βixi with βi =
1

NISi

where the weights βi represent the matching quality of each Kalman Filter.
It is beneficial not to base the decision or weighting on the current measure-

ment quality only, since this would lead to undesired effects due to measurement
noise. Therefore, we apply a low pass filtering to the weights thus accumulating
the errors over a certain time.

Figure 3(b) shows the result obtained by the above approach, if the three
filters are initialized at speeds −10.0, 0.0 and 10.0 m

s . For comparison, the same
filter initialized at -10.0 m

s shown in figure 2(b) is considered. It can be seen that
the multi-filter approach converges at least three times faster than the simple
one. A comparison with figure 2(b) reveals that the combined system shows a
better performance than each of the three single filters.
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Fig. 3. Multi Kalman Filter estimation result (20 fps).

4 Real World Results

The five most probable practical situations are: stationary objects, vehicles driv-
ing in the same direction as our own vehicle with small relative speed, oncoming
traffic, traffic from left, and traffic from right. The sketched multi-filter approach
offers the chance to run independent filters tuned to any of these five situations
in order to reach the desired fast convergence.

Let us first concentrate on the crossing situation already shown in figure 1.
The result of the velocity estimation is given in figure 4. The cyclist drives in front
of parking vehicles while the observer moves towards him at a nearly constant
speed of 4 m

s . The arrows show the predicted position of the corresponding world
point in 0.5 s projected into the image. The colors encode the estimated lateral
speed; the warmer the colour the higher the velocity. In order to prove the results,
the right image in figure 4 shows the same situation 0.5 s later. As can be seen,
the prediction shown in the left image was very accurate.

Figure 5 shows the estimation results for a typical oncoming traffic situation
in which the observer moves at a constant speed of 50 km

h . Here the color encodes
the Euclidean velocity of the tracked points. The prediction matches the real
position shown in the right image.

5 Summary

The proposed fusion of stereo and optical flow simultaneously improves the depth
accuracy and allows estimating position and motion of each considered point.
Segmentation based on this 6D-information is much more reliable and a fast
recognition of moving objects becomes possible. In particular, objects with cer-
tain direction and speed of motion can directly be detected on the image level
without further non-linear processing or classification steps that may fail if un-
predicted objects occur.



Fig. 4. Velocity estimation results for cyclist moving in front of parking cars. The
arrows show the predicted position of the world point in 0.5 s. The right image was
taken 0.5 s later allowing a comparison of the estimation from the left image. Blue
encodes stationary points.

Fig. 5. Velocity estimation results for oncoming car. The observer moves at a constant
speed of 50 km

h
.

Since the fusion is based on Kalman Filters, the information contained in
a number of frames is integrated. This leads to much more robust estimations
than differential approaches like pure evaluation of the optical flow. The proposed
multi-filter approach adopted from our depth-from-motion work [6] speeds up
the rate of convergence of the estimation by a factor of 3-5, which is important
for fast reactions. For example, practical tests confirm that a crossing cyclist at
an intersection is detected within 4-5 frames. The implementation on a 3.2 GHz
Pentium 4 proves that the described approach runs in real-time. Currently, we
select and track about 2000 image points at 12-16Hz, depending on the used
optical flow algorithm (the images have VGA resolution).

Our investigations reveal that the algorithm is highly robust with respect
to measurement noise. Simply spoken, it doesn’t matter how a point in the
world precisely moves from A to B, because those details are filtered out by
the Kalman Filter. On the other hand, it turns out that measurement outliers



sometimes cause serious misinterpretations. This problem is overcome by using
a standard 3σ-test to detect and reject those outliers.

The ego-motion is assumed to be known throughout the paper. For many
in-door robotic applications on flat surfaces the usage of inertial sensors will be
sufficient. At the moment, the ego-motion of our demonstrator vehicle (UTA, a
Mercedes Benz E-Class vehicle) is determined based on the inertial sensors only.
Thanks to the Kalman Filter, the results are sufficient for obstacle avoidance.
The most dominant pitching motion results in an apparent vertical motion that is
ignored for this application. Nevertheless, in order to reach maximum accuracy,
the next step will be to estimate the six degree of freedom ego-motion precisely
using those image points that have been classified as static.
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