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Abstract 

This paper presents a precise correlation-based 
stereo vision approach that allows real-time 
interpretation of traflc scenes and autonomous 
Stop&Go on a standard PC. The high speed is 
achieved by means of a multi-resolution analysis. It 
delivers the stereo disparities with sub-pixel 
accuracy and allows precise distance estimates. 
Traflc applications using this method are described. 

1 Introduction 

Within the UTA (Urban Traffic Assistance) project 
we have developed modules for understanding urban 
traffic scenes [l]. This includes the recognition of 
the infrastructure like traffic signs and lights, 
crosswalks, arrows and lanes as well as the detection 
of obstacles and the recognition of cars and 
pedestrians. Fig. 1 shows a typical inner city 
situation. The recognised objects are visualised on 
the screen: the leading vehicle, two pedestrians, the 
lane, the traffic light and the sign. 

A key component of our demonstrator vehicle that 
has been firstly presented at the Intelligent Vehicles 
conference 1998 in Stuttgart is stereo vision. It 
allows the detection of arbitrary obstacles and the 
estimation of their relative motion at distances up to 
50 meters. 

One can distinguish between two different 
categories of stereo vision: area-based and feature- 
based approaches. Both of them have pros and cons: 
0 Feature-based systems are usually based on 

edges. They provide only sparse depth maps but 
can be implemented very efficiently. In indoor 
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scenes, often vertical edges or corners are 
extracted in the stereo images and tracked over 
time [2]. A trinocular stereo vision system using 
vertical edges is described in [3]. 
Area-based approaches, commonly based on 
correlation techniques, can generate dense depth 
maps but are computationally expensive and can 
have problems at occlusions. Several approaches 
have been implemented for vehicular application, 
such as a system by Subaru. They use a block 
matching algorithm based on 4x4 pixel blocks 
[4]. Another approach [5] uses band-pass filtered 
images in order to overcome the difficulties due 
to different image intensities of the left and right 
camera. 

Fig. I :  View out of UTA 11 I 
We have developed two different stereo approaches, 
one feature based and one area-based. Both have in 
common that they do not require specialised 
hardware but are able to run in real-time on today’s 
standard PC processors. They are sketched and 
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compared in chapter two and three. Their 
applications to obstacle detection and tracking and 
analysis of free space in front of the car are given in 
chapter four. 

2 Real-Time Stereo Analysis based on Local 
Features 

When we started our work on stereo vision, 
correlation based stereo analysis was 
computationally too expensive for real-time analysis 
using standard processors. Since it was always our 
policy to avoid special hardware components, we 
developed a feature based approach. It uses a fast 
non-linear classification scheme to generate local 
features that are used for finding corresponding 
points. This scheme classifies each pixel according 
to the grey values of its four direct neighbours [6]. It 
is verified whether each neighbour is significant 
brighter, significant darker or has similar brightness 
compared to the considered central pixel. The 
similarity is controlled by thresholding the absolute 
difference of pixel pairs. This leads to 34=81 
different classes. In contrast to schemes that 
distinguish between positive and negative vertical 
edges only, this scheme is able to encode edges and 
corners at different orientations. 

The correspondence analysis works on these feature 
images. The search for possibly corresponding 
pixels is reduced to a simple test whether two pixels 
belong to the same class. Since our cameras are 
mounted horizontally, only classes containing 
horizontal details are considered. Thanks to the 

epipolar constraint and the fact that the cameras are 
mounted with parallel optical axis, pixels with 
identical classes must be searched on corresponding 
image rows only. 

It is obvious that this classification scheme cannot 
guarantee uniqueness of the correspondences. In 
case of ambiguities, the solution giving the smallest 
disparity i.e. the largest distance is chosen to 
overcome this problem. This prevents generation of 
phantom objects close to the camera caused by 
wrong correspondences e.g. in scenes with periodic 
structures. In addition, measurements that violate the 
ordering constraint are ignored. 

Fig.2a shows the left image taken from our stereo 
camera system with a base width of 30 cm. The 
outcome of the correspondence analysis is a 
disparity image, which is the basis for all subsequent 
steps described in chapter 4. Fig. 2b visualises such 
an image. Of course, the result are noisy due to the 
extreme local operation. The advantage of this 
approach is its speed. On the currently used 400 
MHz Pentium I1 processor this analysis is performed 
within 23 milliseconds on images of size 384x256 
pixel. 

Two facts might be a problem in some applications.. 
First, the disparity image is computed with pixel 
accuracy only. This problem can simply be 
overcome by post-processing. Secondly, the 
described algorithm uses a threshold to measure 
similarity. Although the value of this threshold turns 
out to be uncritical, it is responsible for mismatches 
of structures of low contrast. 

I 1 
Fig 2b: Grey value encoded disparities obtained 
by the sketched feature based approach 
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3 Real-Time Stereo Analysis based on 
Correlation 

The rapidly increasing computational power allows 
to realise area based techniques with real-time 
performance nowadays. For applications that require 
high precision 3D information and can not accept 
the noise level of the above scheme, we developed 
an alternative correlation-based approach. 
Nevertheless, the maximum processing time that we 
tolerate is 100 msec per image pair. 

In order to reach this challenging goal, we use the 
sum-of-squared (SSD) or sum-of-absolute (SAD) 
differences criterion instead of expensive cross 
correlation to find the optimal fit. In order to avoid 
wrong results due to different mean and variance of 
the image pairs, we control gain and shutter of our 
cameras. 

However, the demand for real-time performance is 
still a hard problem. Full brute-force correlation of 
9x9 pixel windows requires about 9 seconds for 
images of size 384x256, if the maximum disparity is 
set to 80 pixel. With an optimised recursive 
implementation we achieved typical values of 1.2 
seconds. 

To speed up the computation, we use a multi- 
resolution approach in combination with an interest 
operator. The idea is to find correspondences on a 
coarse level that can be recursively refined. First, a 
gaussian pyramid is constructed for the left and right 
stereo images (see fig. 3). Areas with sufficient 
contrast are extracted by means of a fast horizontal 
edge extraction scheme, but any other interest 
operator that extracts points of significant horizontal 
variance can be used, too. 

Pixel with sufficient gradient are marked, from 
which a binary pyramid is constructed, as shown in 
fig. 3. A pixel (ij) at level n is marked if one of its 4 
corresponding pixels at level n-1 is set. A non- 
maximum suppression can be applied to the gradient 
image in order to further speed up the processing. In 
this case, we find about 1100 attractive points at 
pyramid level zero (original image level), 700 at 
level one, 400 at level 2 and about 150 at level 3 on 
an average. Only those correlation windows with the 
central pixel marked in these interest images are 
considered during the disparity estimation 
procedure. 

Depending on the application, the correlation 

Fig. 3 left: binary pyramid, middle: Gaussian pyramid for left image, right: correlation pyramid 
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process starts at level two or three of the pyramid. If 
D is the maximum searched disparity at level zero, it 
reduces to D/2**n at level n. At level 2 this 
corresponds to a saving of computational burden of 
about 90% compared to a direct computation at level 
zero. Furthermore, smaller correlation windows can 
be used at higher levels which again accelerates the 
computation. 

The result of this correlation is then transferred to 
the next lower level. Here, only a fine adjustment 
has to be performed within a small horizontal search 
area of +/- 1 pixel. This process is repeated until the 
final level is reached. At this level, subpixel 
accuracy is achieved by fitting a parabolic curve 
through the computed correlation coefficients. 

The price we have to pay for this fast algorithm is 
that mismatches in the first computed level 
propagate down the pyramid and lead to serious 
errors. Since the quality of the found match cannot 
be judged by the measured SSD or SAD, we 
compute the normalised cross correlation coefficient 
for the best matches at the first (i.e. highest) 
correlation level and eliminate bad matches from 
further investigations. In addition, a left-right check 
can be applied to the disparity image obtained at the 
highest pyramid level. In case of ambiguities, the 
best match or the match with the smaller disparity 

I ' 

Fig. 4: Grey value encoded disparity image generated by 
the correlation approach. Non-maximum suppression has 
been applied to the interest image to speed up processing. 
Distance is inverse proportional to the darkness. 

can be selected. The latter strategy avoids the 
erroneous detection of close obstacles caused by 
periodic structures. 

If we start at level 2 (resolution 91x64 pixel), the 
total analysis including pyramid construction runs at 
about 90 milliseconds on a 400 MHz Pentium. If we 
abandon the multi-resolution approach, about 450 
milliseconds are necessary to yield comparable 
results. This corresponds to a speed up factor of 5. 
Starting at higher levels causes problems in our field 
of applications, since relevant structures can be lost. 

A disparity image derived by this scheme is shown 
in fig. 4 with non-maximum suppression. Since a 
larger neighbourhood is taken into account during 
processing, the result looks less noisy than the 
feature based solution. In fact, only very few 
mismatches remain. 

4 Understanding Traffic Scenes using the 
Depth Information 

The obtained disparity or depth image delivers rich 
information for the subsequent processing steps in 
our UTA I1 vehicle. This includes obstacle detection 
and tracking, but also free space analysis and 
obstacle classification. Since the results of both 
sketched stereo algorithms are disparity images, the 
further processing is independent of the used 
approach. 

4.1 Obstacle Detection 

Driving on roads, we regard all objects above 
ground level as potential obstacles. If the cameras 
are mounted H meters above ground and looking 
downwards with a tilt angle a!, all image points 
with a disparity d given by 

B Y  
H f ,  

d = xI - xr = - f.. [- . cos( a) + sin( a)] 

lie on the road. Here, B i s  the base line and f t h e  
focal length measured in pixel in horizontal (x) and 
vertical (y) direction. The y-axis is looking 
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downward, the center of the coordinate system is the 
optical axis. 

The projection of all features above the road plane, 
i.e. those with disparities larger than given by the 
above equation, yields a two-dimensional depth 
map. In this histogram, obstacles show up as peaks. 

The map shown in fig.5 
has been obtained for the 
situation shown in fig.2. 
It covers an area of 40m 
in length and 6m in 
width. The hits in the 
histogram are clearly 
caused by the cars 
parking left and right, the 
car in front and the 
pedestrian. The shown 
depth map has been 
obtained by the 
correlation method. This 
map is used to detect 

Fig.5: Depth mapfiom objects that are tracked 
bird eye s view (see text) subsequently. In each 

loop, already tracked 
objects are deleted in this depth map prior to the 
detection. 

The detection step delivers a rough estimate of the 
object width (2.1 m for the car, 0.9m for the 
pedestrian). A rectangular box is fitted to the cluster 
of feature points that contributed to the extracted 
area in the depth map. This cluster is tracked from 

Fig. 6: Free space determinedfvom the depth 
information 

frame to frame in the depth image. For the 
estimation of the obstacle distance, the disparities of 
the object's feature points are averaged. 

From the position of the objects relative to the 
camera system their motion states i.e. speed and 
acceleration in longitudinal as well as lateral 
direction are estimated by means of Kalman filters. 
For the longitudinal state estimation we assume that 
the jerk, i.e. the deviation of the acceleration, of the 
tracked objects is small. This is expressed in the 
following state model with distance d, Speed v and 
acceleration a: 

'1 T T 2 / 2  d 

0 0  1 
"1, 0 

The index 1 denotes the states of the lead vehicle, the 
index e denotes the ego vehicle. T is the cycle time. 
The longitudinal motion parameters are the inputs 
for a distance controller. A comparable filter 
estimates the lateral motion of the leader, taking into 
account the yaw rate of our own vehicle. 

Camera height and pitch angle are not constant 
during driving. Fortunately, the relevant camera 
parameters can be efficiently estimated using the 
extracted road surface points. Least squares 
techniques or Kalman filtering can be used to 
minimise the sum of squared residuals between 
expected and found disparities. The lane recognition 
benefits from this fact. 

4.2 Free space analysis 

Active collision avoidance is the ultimate goal of 
driver assistance. A careful evaluation of the depth 
map allows to extract free space on the road that 
could be used for a jink. Since this evaluation does 
not depend on the object grouping described above, 
it can be more detailed and does not depend on the 
heuristics used to detect and track obstacles. 
Averaging and thresholding the depth map with a 
distance dependent threshold result in a binary depth 
map, from which all visible points on the road plane 
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can be determined. Fig. 6 shows the found free space 
overlaid on the original image. 

Alternatively, the driving corridor can be estimated 
from the depth map, if no other lane boundaries are 
present. In [7] this depth map together with the 
tracked lead vehicle is used to optimise the path 
UTA I1 should drive in order to avoid the collision 
with parking cars or suddenly occuring obstacles. 

4.3 Obstacle Recognition 

In traffic scenes some objects are of special interest: 
vehicles and pedestrians. The 3D analysis supports 
their recognition in three ways: 
1. It detects these objects much more efficiently 

and reliably than most monocular approaches 
can do. 

2. Detected objects can be pre-classified by means 
of their precisely measured width and height. 

3. Subsequently applied classification schemes can 
work on image regions that have been scaled to 
standard size. 

Potential vehicles are scaled to 32x32 pixel, 
pedestrians to 64x32 pixel. Fig. 7 shows such 
images. A neural network classification scheme 
using spatial receptive fields is used to recognise 
these objects. This approach is extremely fast, the 
average time for scaling and classification is less 
than 1 milliseconds. 

This approach is sufficient for the recognition of 
cars and trucks. However, the recognition of 
pedestrians turns out to be more difficult. If the 
network is not sure about it's decision, further 
classification stages are triggered for that reason. 
Moving pedestrians are checked by means of a time- 

delay neural network that looks for the typical gate- 
patterns of walking pedestrians. Still pedestrians can 
be recognised by means of a shape based approach. 
These schemes are described in [8] in detail. 

5 Summary 

Stereo vision is a powerful approach for the 
interpretation of complex scenes. The described 
algorithm generates disparity images with sub-pixel 
accuracy in real-time on a standard PC. Thus, no 
specialized hardware is necessary any longer to 
reach this important goal. The scheme has proven 
reliability in daily traffic even under bad weather 
conditions including rain and snow. 
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