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Abstract

Most computer vision systems for vehicle
guidance developed in the past were de-
signed for the comparatively simple high-
way scenario.

Autonomous driving in the much more
complex scenario of urban traffic or driver
assistance systems like Intelligent
Stop&Go are new challenges not only
from the algorithmic but also from the
system architecture point of view.

This contribution describes our current
work on these topics. It includes the ap-
propriate algorithms as well as ap-
proaches to control the various vision
modules.

1. Introduction

Systems for vision-based navigation in the
early 80’s were based on the experience
gained from static image processing.
Since little computational power was
available that time, it was common to take
a picture, analyse it, and drive some dis-
tance in a blind fashion before the vehicle
was stopped again for the next picture.

In 1986, Dickmanns [Dic86] demonstrated
autonomous driving on highways at
speeds up to 100 km/h using only a cou-
ple of 8086 processors. His idea was to
use Kalman Filters to restrict the possible
interpretations of the scene so that they
are consistent with the dynamics of the
considered systems as well as the inter-
pretations derived in the past.

A large number of vision systems for lat-
eral and longitudinal vehicle guidance,
lane departure warning and collision
avoidance has been developed during the
last 10 years all over the world (e.g.
[Tho88], [Web95], [Fra95], [Pom96]).

Most of the known autonomous demon-
strators have been designed for highway
traffic since this scenario is relatively sim-
ple: lanes are usually well marked and
built with slowly changing curvature, traffic
signs are large and clearly visible and
other vehicles are the only potential ob-
stacles that need to be considered. As
shown in the final presentation of the
European Prometheus project, the Daim-
ler-Benz demonstrator vehicle VITA Il is
able to drive autonomously on highways
and perform overtaking manoeuvres with-
out any interaction [UIm94].

A vision system would be even more at-
tractive for future customers if its use
were not limited to highway-like roads, but
were also extended to support the driver
in everyday traffic situations, including city
traffic. Consequently, future computer
vision research for traffic applications will
have to consider a much wider range of
situations than it does today.

Particularly attractive for driver assistance
is the urban traffic environment. Imagine
an Intelligent Stop&Go system that is able
to behave like a human driver: it does not
only keep the distance to its leader con-
stant, as a radar based system would do,
but also follows the leader laterally.
Moreover, it stops at red traffic lights and
stop signs, gives right of way to other ve-
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Fig.: Image understanding in the urban
environment is more challenging than
on highways.

hicles if necessary and tries to avoid colli-
sions with children running across the
street.

Unfortunately, vision on urban roads turns
out to be much more difficult than on
highways due to the complexity of this
environment. Figure 1 shows an everyday
example, that we have to understand.

In this contribution we describe our ap-
proach to build an intelligent real-time vi-
sion system for this scenario. This in-
cludes stereo vision for depth-based ob-
stacle detection and tracking, a framework
for monocular detection and recognition of
relevant objects and an attempt to realise
such a system without the necessity of a
super computer in the trunk. The compu-
tational power in our demonstrator car
UTA (Urban Traffic Assistant) is currently
limited to three 200 MHz PowerPCs.

2. Urban Applications and Vision
Tasks

In order to limit the complexity of autono-
mous driving, we intend to realise the de-
scribed Intelligent Stop&Go system first.
The goal is to detect an appropriate lead-
ing vehicle and to signal the driver that the
system is ready for autonomous following.
It will be his responsibility to activate the
system. If it cannot continue to follow the
leader (e.g. since he is changing the
lane), the system shall be allowed to drive

a limited distance in autonomous mode
searching for a new leader before the
control of the vehicle is turned over to the
driver again. Control will also be given
back if the vehicle has to stop in front of a
stop sign or if it is the first vehicle in front
of a red traffic light.

Besides an Intelligent Stop&Go system as
sketched above, driver assistant systems
like rear-end collision avoidance or red
traffic light recognition and warning are
also of interest for urban traffic.

The most important perception tasks that
have to be performed in order to build
such systems are:

e The leading vehicle must be detected
and its distance, speed and accelera-
tion must be estimated in longitudinal
and lateral direction.

e The course of the lane must be ex-
tracted even if it is not given by well
painted markings and does not show
clothoidal geometry.

e Small traffic signs and traffic lights
have to be detected and recognised in
a highly coloured environment.

¢ Different additional traffic participants
like bicyclists or pedestrians must be
detected and classified.

e Stationary obstacles that limit the avail-
able free space e.g. parking cars must
be detected.

3. Stereo based Obstacle Detection
and Tracking

For navigation in urban traffic it is neces-
sary to build an internal 3D map of the
environment in front of the car. This map
must include position and motion esti-
mates of relevant traffic participants and
potential obstacles. In contrast to the
highway scenario where one can concen-
trate on looking for rear sides of leading
vehicles, our system has to deal with a
large number of different objects.

Several schemes for object detection in
traffic scenes have been investigated in
the past. Besides the mentioned 2D
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Fig.3.1: Stereo image pair.

model based approaches searching for
rectangular, symmetric shapes, inverse
perspective mapping based techniques
[Bro97], optical flow based approaches
[Enk97] and correlation based stereo
systems [San96] have been tested.

The most direct method to derive 3D-
information is binocular stereo vision. The
key problem is the correspondance analy-
sis. Unfortunately, classical approaches
like area based correlation techniques or
edge based approaches are computation-
ally very expensive. To overcome this
problem, we have developed a feature
based approach that is tailored to our
specific needs and runs in real time on a
200 MHz PowerPC 604 [Fra96].

This scheme classifies each pixel accord-
ing to the grey values of its four direct
neighbours. It is checked whether each
neighbour is much brighter, much darker
or has similar brightness compared to the
considered central pixel. This leads to
3*=81 different classes encoding edges
and corners at different orientations.
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Fig. 3.2: Classified pixel.

Fig.3.1 shows a stereo image pair taken
from our camera system with a base width
of 30 cm. The result of the structure clas-
sification is shown in Fig.3.2 for the left
image. Different grey values represent
different structures, pixel in homogeneous
areas are assigned to the ,white“ class
and ignored in the sequel.

The correspondance analysis works on
these feature images. The search for pos-
sibly corresponding pixels is reduced to a
simple test whether two pixels belong to
the same class. Thanks to the epipolar
constraint and the fact that the cameras
are mounted with parallel optical axis,
pixels with identical classes must be
searched on corresponding image rows
only.

It is obvious that this classification scheme
cannot guarantee uniqueness of the cor-
respondances. If ambiguities occur, the
solution giving the smallest disparity i.e.
the largest distance is chosen to over-
come this problem. This prevents wrong
correspondances caused by for example
periodic structures to generate phantom
obstacles close to the camera. In addition,
measurements that violate the ordering
constraint are ignored.

The outcome of the correspondance
analysis is a disparity image, which is the
basis for all subsequent steps. Fig. 3.3
tries to visualise such an image.

Fig. 3.3: Distanée Image. -Th-e- brfghtness
of the feature pixel is proportional to their
distance.
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3.1 Structures on the Road

For the recognition of road boundaries it is
helpful to know which structures in the
image lie on the road surface. Such
structures can easily be extracted from
the disparity image if the road can be as-
sumed to be (nearly) flat.

If the camera orientation is known, all
points having a disparity in a certain inter-
val around the expected value lie on the
road, those with larger disparities belong
to objects above the road. Looking for all
points which lie within a height interval of
[-15cm, 15cm] relative to the road yields
the result displayed in Fig.3.4.

Fig. 3.4: Classified road pixel.

3.2 Estimation of Camera Height and
Pitch Angle

In practice camera height and pitch angle
are not constant during driving. Fortu-
nately, the relevant camera parameters
can be efficiently estimated themselves
using the extracted road surface points.
Least squares techniques or Kalman fil-
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Fig. 3.5: Estimated camera pitch angle

speed [m/sec]

during acceleration and deceleration.

tering can be used to minimise the sum of
squared residuals between expected and
found disparities.

Results of a test drive are shown in Fig.
3.5. During acceleration, the pitch angle
decreases, while it increases during
breaking manoeuvres. In the time be-
tween 80 and 120 seconds the speed was
nearly constant. The oscillations of the
pitch angle are due to the uneven road
surface.

3.3 Obstacle Detection and Tracking

If all features
on the road
plane are re-
moved, a 2D
depth map
containing the
remaining
features  can
be generated.
The map
shown in Fig.
3.6 covers an
area of 30m in
length and 8m
in width. The
leading vehicle causes the two peaks at
15m distance and lateral positions of Om
and —2m. This map is used to detect ob-
jects that are tracked subsequently. In
each loop, already tracked objects are
deleted in this depth map prior to the de-
tection.

30m

t o B

-2m Om +2m —

Fig. 3.6: Depth map,
peaks are caused by the
car and the trees.

The detection step delivers a rough esti-
mate of the object width. A rectangular
box is fitted to the cluster of feature points
that contributed to the extracted area in
the depth map. This cluster is tracked
from frame to frame. For the estimation of
the obstacle distance, a disparity histo-
gram of the object’'s feature points is
computed. In order to obtain a disparity
estimate with subpixel accuracy, a parab-
ola is fitted to the maximum of this histo-
gram.

In the current version, an arbitrary number
of objects can be considered. Sometimes
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the right and left part of a vehicle are ini-
tially tracked as two distinct objects.
These objects are merged on a higher
,object-level” if their relative position and
motion fulfil reasonable conditions.

From the position of the objects relative to
the camera system their motion states i.e.
speed and acceleration in longitudinal as
well as lateral direction are estimated by
means of Kalman filters.

The longitudinal motion parameters are
the inputs for a distance controller. Fig.
3.7 shows the results of a test drive in the
city of Esslingen, Germany. The desired
distance is composed of a safety distance
of 10 meters and a time headway of 1
second. Notice the small distance error
when the leader stops.
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Fig. 3.7: Autonomous vehicle following in city

traffic.

4. Object Recognition

The previous section dealt with the use of
stereo vision to detect and track obstacles
in front of the vehicle. One essential thing
that makes Stop&Go intelligent is the abil-
ity to recognise objects. Two classes of
objects are relevant for this application:

o elements of the infrastructure (road
boundaries, road marks, traffic signs
and traffic lights) and

o traffic participants (pedestrians, (motor)
bicycles and vehicles).

How do we recognise various objects?
Although devising a general framework is
difficult, we often find ourselves applying
two steps, detection and classification.
The purpose of the detection step is to
efficiently obtain a region of interest (ROI),
i.e. a region in image space or parameter
space that could be associated with a po-
tential object. Besides the described ste-
reo approach, we have also developed
detection methods based on shape, col-
our and motion. For example, shape and
colour cues are used to find potential traf-
fic signs and arrows on the road (see
Subsections 4.1 and 4.2), motion is used
to find potential pedestrians (see Subsec-
tion 4.4).

Once a ROI has been obtained, more
computation-intensive algorithms are ap-
plied to ,recognise" the object, i.e. to es-
timate model parameters. In our applica-
tion to natural scenes, objects have a wide
variety of appearances because of shape
variability, different viewing angles and
illumination changes. Because explicit
models are seldom available, we derive
models implicitly by learning from exam-
ples. Recognition is seen as a classifica-
tion process. We have implemented a
large set of classifiers for this purpose, i.e.
Polynomial Classifiers, Principal Compo-
nent Analysis, Radial Basis Functions,
(Time Delay) Neural Networks and Sup-
port Vector Machines (the latter in collabo-
ration with the MIT CBCL Laboratory
[Pap98]). Our emphasis on learning ap-
proaches to object recognition is backed
up by many hours of data recorded on a
digital video recorder while driving in ur-
ban traffic. Interesting data segments are
labelled off-line.

4.1 Road Boundaries and Markings
4.1.1 Road Recognition

Road recognition has two major objec-
tives. As a stand alone application, it en-
ables automatic road following. In the
context of a Stop&Go system, lane
changes of the leading vehicle have to be
registered in order to return the control of



IEEE Intelligent Systems, vol .13, nr. 6, 1999.

Fig. 4.1 Urban road scenario.

the vehicle back to the driver, as stated in
chapter 1.

Furthermore, the lateral control behaviour
of the Stop&Go system can be improved.
As the standard solution, lateral guidance
is accomplished by a so called lateral tow
bar controller. It requires distance and
angle with respect to the leading vehicle
as measured by the stereo vision system
described above. A tow bar controlled
vehicle drives approximately along the
trajectory of the leading vehicle but tends
to cut the corner in narrow turns. This un-
desirable behaviour can be controlled if
the position of the ego vehicle relative to
the lane is known.

Lanes of urban roads are not as well de-
fined as those of highways. Lane bounda-
ries often show poor visibility. Various
objects, as ftraffic participants or back-
ground infrastructure, clutter the image.
The road topology is comprised of a vari-
ety of different lane elements as stop
lines, zebra crossings and forbidden
zones. A comprehensive geometrical road
model can not be readily defined. All these
characteristics suggest a data driven,
global image analysis that robustly sepa-
rates lane structures from background.

The global detection analyses the polygo-
nal contour images. Fig. 4.1 shows an
image of the considered road, Fig. 4.2 the
extracted edges. A database organises
the polygons with respect to their length,
orientation, position and mutual spatial
relations such as parallelism and colline-
arity. It provides fast filters for these at-
tributes. Arbitrary combinations of proper-

Fig. 4.2: Polygonal edge image (light)
and detected lane structures (dark).

ties can be specified to detect possible
road structures. Detected lane boundaries
are subsequently classified as curbs,
markings and clutter by a Polynomial
Classifier. Results of the lane boundary
recognition are shown in figure 4.2 with
dark lines, a recognised pedestrian
crossing is shown in figure 4.3. Regions
where obstacles have been detected by
the stereo vision system of chapter 3 are
ruled out as possible positions of road
structures.

Even though the entire global detection
needs only 80-100ms on a PowerPC 604,
data driven methods are computationally
quite expensive. As learned from the work
on highway lane following, model based
estimation of the road geometry is very
efficient in that only small portions of the
image have to be considered when lane
markings are locally tracked in image se-
quences.

The urban lane tracker combines global
analysis with this local principle. For as
long as possible, boundaries detected by
the global analysis are tracked locally in
order to estimate the vehicle’s lateral po-

o & A A e

Fig. 4.3: Detected zebra crossing.
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sition and yaw angle in a few milliseconds.
Tracking and global detection are super-
vised to collaborate efficiently [Pae98].

4.1.2 Arrow Recognition

The recognition of arrows on the road
follows the two-step procedure, detection
and classification, mentioned at the be-
ginning of this section. It uses shape and
colour cues in a region-based approach.
The detection step consists of a colour
segmentation step and a filtering step.

The colour (i.e. greyscale) segmentation
step involves reducing the number of col-
ours in the original image to a handful. In
this application, this reduction is based on
the minima and plateaus of the greyscale
histogram. Following this greyscale seg-
mentation a colour connected compo-
nents (CCC) analysis is applied to the
segmented image. The algorithm pro-
duces a database containing information
about all regions in the segmented image.
Among the computed attributes are the
area, bounding box, aspect ratio, length
and smoothness of contour as well as
additional features which are determined
on a need-basis, due to computational
cost. We have developed a query lan-
guage for this region database, dubbed
,Meta-CCC", which allows queries based
on attributes of single regions as well as
on relations between regions (e.g. adja-
cency, proximity, enclosure and collinear-
ity). The filtering step thus involves for-
mulating a query to select candidate re-
gions from the database. The resulting set

Fig. 4.4: Above: Street scene displaying a
direction arrow. Below: the segmented

and classified arrow.

is normalised for size and given as input
to a radial basis function (RBF) classifier.
Fig. 4.4 shows the original and the ob-
tained result.

4.2 Traffic Signs

4.2.1 Colour

Our colour traffic sign recognition system
[Jan93] goes back to the Prometheus
project and was originally developed with
the highway scenario in mind. Overall, it
follows the same steps as described in the
previous subsection on road arrow detec-
tion, that is, colour segmentation, filtering
and classification. The colour segmenta-
tion step involves pixel classification using
a look-up table. The look-up table was
generated off-line in a training process
using a polynomial classifier. The out-
come of the segmentation process are
pixels labeled "red", "blue", "yellow" and
"uncoloured". As before, we apply the
CCC algorithm and formulate queries on
the resulting regions using the MetaCCC
procedure. Typical queries would include
searching for red regions of particular
shape which enclose an uncoloured re-
gion. The next step, classification, is done
with a RBF classifier in a multi-stage pro-
cess. The input is a colour-normalised
pictograph, extracted from the original
image at the candidate locations provided
by the MetaCCC procedure. The classifi-
cation stages involve colour, shape and
pixel values. The results are stabilised by
integration over time [Jan93].

There are a number of challenges to traf-

mﬂ—_—. -

ig. 4.5: Recognised traffic signs in a
wide-angle view.
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fic sign recognition in the urban scenario.
First, the field of view needs to be ex-
tended, which results in a lower effective
image resolution. At the same time, the
use of wide-angle lenses introduces sig-
nificant lens distortion. Traffic signs are
also not viewed head-on, as most of the
time on highways. In the city, they must
be recognised when they are lateral to the
camera and appear skewed in the image.
The sketched system has been extended
in order to cope with these problems and
the urban specific signs that are relevant
for our goals have been added. Figure 4.5
shows some results.

4.2.2 Greyscale

Clearly, colour information is beneficial for
traffic sign recognition. Yet there are still
some issues open regarding colour seg-
mentation. The difficulty is that there is
quite a range in which the same ,true"
traffic sign colour can appear in the im-
age, depending on illumination condition,
i.e. whether camera looks towards or
away from the sun, day or night, rain or
sunshine. In order to answer the question
of how successful we can be without col-
our cues we are also working on a shape-
based traffic sign detection system in
greyscale, described here. This system
might also be useful for the case one can-
not use colour because of cost considera-
tions.

A

(c)

(d)

Fig: 4.6: (a) original image, (b) template,
(c) edge image and (d) Distance-Trans-
form image (see text).

The greyscale detection system works on
edge features, rather than region features.
The approach uses a hierarchical tem-
plate matching technique based on dis-
tance transforms (DTs) [Gav98]. DT-
based matching allows the matching of
arbitrary (binary) patterns in an image.
These could be circles, ellipses, triangles
but also non-parameterised patterns, for
example outlines of pedestrians (see also
subsection 4.4.1)

The pre-processing step involves reading
a test image (Figure 4.6a), computing
thresholded edge image (Figure 4.6c¢),
and computing its distance image
("chamfer image", Figure 4.6d). The dis-
tance image has the same size as the
binary edge image; at each pixel it con-
tains the image distance to the nearest
edge pixel of the corresponding binary
edge image.

The matching step involves correlating a
binary shape pattern (e.g. Figure 4.6b)
with the distance image; at each template
location a correlation measure gives the
sum of nearest-distance of template
points to image edge points. A low value
denotes a good match (low dissimilarity),
a zero value denotes a perfect match. If
the measure is below a user-defined
threshold one considers a pattern de-
tected.

The advantage of matching a template
with the DT image is that the resulting
similarity measure will be smoother as a
function of the template parameters
(transformation, shape). This enables the
use of various efficient search algorithms
to lock onto the correct solution. It also
allows more variability between a template
and an object of interest in the image.
Matching with the edge image (or the un-
segmented gradient image, not shown
here), on the other hand, typically pro-
vides strong peak responses but rapidly
declining off-peak responses, which do
not facilitate efficient search strategies or
allow object variability.
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Fig. 4.7: Traffic sign detection: (a) day
and (b) night (white dots denote inter-
mediate results; the locations matched
during hierarchical search).

We have extended the basic DT-matching
scheme with a hierarchical approach,
where in addition to a coarse-to-fine
search over the translation parameters,
templates are grouped off-line into a tem-
plate hierarchy based on their similarity.
This way, multiple templates can be
matched simultaneously at the coarse
levels of the search, resulting in various
speed-up factors. The template hierarchy
can be constructed manually or can be
generated automatically from available
examples (i.e. learning). Furthermore, in
matching, features are distinguished by
type and separate DT's are computed for
each type (e.g. based on edge orienta-
tions). For details, refer to [Gav98].

Figure 4.7 illustrates the followed hierar-
chical approach. The white dots indicate
locations where the match between image
and a (prototype) template of the template
tree was good enough to consider
matching with more specific templates
(e.g. the children) on a finer grid. The final

(h)

Fig. 4.8: More detection results.

(i)

detection result is also shown. More de-
tection results are given in Figure 4.8,
including some false positives (c and i).
We achieve typical detection rates of 90%
on single frames, with 4-6% false posi-
tives. More than 95% of the false positives
were rejected in a subsequent pictograph
classification stage using a RBF network.

4.3 Traffic Lights

The recognition of traffic lights follows the
same three steps used before: colour
segmentation, filtering and classification.
Colour segmentation uses a simple look-
up-table in order to determine image parts
in the traffic light colours red, yellow, and
green. By applying the before-mentioned
colour connected components (CCC) al-
gorithm to the segmented image only the
blob-like shaped regions the area of which
lies within a certain range are selected as
possible traffic light candidates using the
MetaCCC procedure.

A region of interest (ROI) of a size
adapted to the blob diameter is then
cropped such that it contains not only the
luminous part of the traffic light but also its
dark box. The ROI is normalised to a uni-
form size. Eventually, a local contrast
normalisation by means of a simulated
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Fig. 4.9: Example of the recognition of a
red traffic light. Additionally shown are the
cropped and normalised ROI before (left)

and after (right) pre-processing it by
means of a simulated Mahowald retina.

Mahowald retina is carried out additionally
(see Fig. 4.10).

This pre-processed ROI serves as an in-
put to a three-layer feed-forward neural
network that performs the actual object
recognition task. It is constructed such
that a neuron of the second network layer
does not ,see" the complete underlying
image but only a small region of it, i.e. its
receptive field. These receptive fields ex-
tract local features from the input image
that have been learned during the training
process. The actual classification takes
place in the higher network layers. The
network has K output neurons for the K
different object classes to be distin-
guished; the output neuron with the high-
est activation denotes the class to which
the object is assigned. In the case of traf-
fic lights, we have K=2 classes, the class
ytraffic light" and the class ,garbage".

The appearance of red, red-yellow, yellow,
and green traffic lights is trained sepa-

-10 -

rately, respectively. On a 133 MHz Power
PC, the algorithm runs at a rate of about 4
images per second, depending on the
number of traffic light candidates. In ex-
periments, we found recognition rates of
above 90%, with false positive rates below
2%.

4.4 Pedestrians

This subsection deals with work in prog-
ress in recognising the most vulnerable
traffic participants, the pedestrians. We
can either recognise pedestrians by their
shape (subsection 4.4.1) or by their char-
acteristic walking pattern (subsection
4.4.2).

4.4.1 Towards Pedestrian Recognition
from Shape

We are currently compiling a large set of
pedestrian outlines to account for the wide
variability of pedestrian shapes in the real
world. Our first approach to pedestrian
recognition by shape has involved blurring
the pedestrian outlines in the database
(Fig. 4.10) and performing a principal
component analysis on the resulting data
set. This results in a compact representa-
tion of the original image data in terms of
the eigenvectors. The first eigenvectors
(and the mean) represent characteristic
features of the pedestrian distribution, the
last eigenvectors mostly represent noise
(see Fig. 4.11). In order to find pedestri-
ans in a test image, we apply a gradient

Fig. 4.10:Examples of the pedestrian da-
tabase.
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-
Fig. 4.11: Principal component analysis:
eigenvectors 0 (mean), 1, 2, 25.

operator to the image and normalise for
image energy. The resulting normalised
gradient image is then correlated with the
first few eigenvectors of the pedestrian
data set. Preliminary findings show that
we need no more than the first 10 eigen-
vectors. A threshold on the correlation
value determines whether a pedestrian is
recognised or not, see Fig. 4.12 for a
matching result. Besides the correct solu-
tion, we also obtain a false positive at the
windows. The latter could be accounted
for if camera positioning with respect to
the road is considered. For a different
learning-based approach to pedestrian
recognition, see [Pap98].

4.4.2 Towards Pedestrian Recognition
from Motion

The neural network used for traffic light
recognition can be extended into the tem-
poral dimension; the input then consists of
greyscale image sequences. This results
in a time delay neural network (TDNN)
architecture with spatio-temporal receptive
fields.

The receptive fields act as filters to extract

Fig. 4.12: Matching results: The pedes-
trian is correctly detected, a false alarm
occurs in the window above.

-11 -

image sequence. Thus, features are not
hard-coded but learned during a training
process. Subsequent classification relies
on the filtered" image sequences rather
than on the raw image data.

The TDNN is currently applied to the rec-
ognition of pedestrian gait patterns. A de-
tection step determines the approximate
position of possible pedestrians; we have
two methods at our disposal:

e Colour clustering on monocular images
in a combined colour/position feature
space [Hei98]. A fast polynomial clas-
sifier selects the clusters possibly con-
taining a pedestrian's legs by evaluat-
ing temporal changes of a shape-
dependent cluster feature.

e 3D segmentation by stereo vision: the
stereo algorithm described in section 3
determines bounding boxes circum-
scribing obstacles in the scene.

Final verification on the candidate region
sequence is then performed by the TDNN,
compare Fig. 4.13. We are currently ex-
amining whether the TDNN approach can
be used for segmentation-free object and
motion detection and recognition.

Fig. 4.13: Example of a se-
quence of stereo images (only
the left image of each pair is
shown, respectively) on which
a 3D segmentation has been
performed in order to deter-
mine the bounding boxes
shown. The TDNN recognised
the corresponding image re-
gions as the legs of a pedes-
trian. Left: Example of a re-
sulting cropped and scaled
image sequence to be fed into
the TDNN.
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5. Putting things together

In our well known Prometheus demon-
strator VITA 1l for driving autonomously on
highways each vision module was as-
signed to a subset of processors in a
static configuration. The modules were
running permanently, even though some
results were of no interest for vehicle
guidance at that moment.

To use this architecture for computer vi-
sion in complex inner city traffic would
require even more resources. But why
looking for new traffic signs or continu-
ously determine the lane width while the
car is stopping at a red traffic light? While
following a leading vehicle, why should not
only tasks be processed which are useful
in that situation?

Although we were successful with the
mentioned brutal force approach, such
questions reveal some disadvantages:

e There is no concept for controlling the
modules, e.g. to focus the resources
on relevant tasks for specific situa-
tions.

e |t is not scaleable for a larger number
of modules.

e There is no uniform concept for the
interconnection and Cupertino of
modules.

e The development of new applications
usually requires extensive reimple-
mentations.

¢ Reuse of old modules can be difficult
due to missing interfaces.

The growing complexity of autonomous
systems hence requires an architecture
which can cope with these problems. The
pursued approach is to make an explicit
distinction between the modules (obstacle
detection, vehicle control etc.) on one
hand and the connection of modules to
perform a specific application (e.g.
autonomous Stop&Go driving) on the
other hand.

Each module is connected to the system
by a module interface. This allows devel-
opers to concentrate on solving the com-
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Fig. 5.1: Visualization of the objects
seen by the system. The touch screen
acts as the interface between developer
and vision modules.

puter vision problem instead of having to
worry about how to connect their work to
the application environment.

An application is formed by connecting
together a group of these modules. The
lane keeping application for example can
be implemented by connecting the lane
detection module and the lateral vehicle
control module.

This flexible architecture allows the devel-
opment of various applications without
modifying the modules. Moreover, the
system allows to change the connections
during runtime. This enables the eco-
nomical use of computational resources
and adaptation of the system to the cur-
rent situation. It is possible, for example,
to accomplish lane keeping on highways
and switch dynamically to the Stop&Go
application in the city. For a more detailed
description of the system see [Goe98].
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So far, most of the modules described in
the paper have been integrated into the
system. Currently, our demonstrator car
UTA is able to recognise traffic lights, traf-
fic signs, overtaking vehicles, direction
arrows, pedestrian crossings and to follow
a leading vehicle (Stop&Go) autono-
mously. The system is running on three
200 MHz AlX/PowerPCs for the computer
vision modules and a Windows/Pentium |l
for the visualisation of the results (see
image 5.1). The next steps are to include
the missing modules, and to adapt the
system to multiple environments and ap-
plications:

e autonomous driving on highways

e speed limit assistant: the driver is
warned when driving faster than al-
lowed on the current road
lane departure warning

e enhanced cruise control: the vehicle
slows down, when a car in front falls
below the desired speed. It raises the
speed again, if there is no obstacle
ahead.

6. The Road Ahead

The experience gained from tests on ur-
ban roads strengthens our confidence that
computer vision will go downtown and
vision-based driver assistance and
autonomous driving will appear in the in-
ner city environment in the not so distant
future.

In this paper we have focused on com-
puter vision issues, but there are also re-
lated issues which are of great interest for
this kind of applications.

Angle of View: A serious problem in urban
traffic is the necessary angle of view. On
one hand we need a wide angle lens to
see traffic lights and signs if we are close
to them. On the other hand, the precision
of stereo based distance measurement
and the performance of object detection
and recognition, in particular traffic sign
recognition, grows with the focal length.
We expect that these problems could be
rather solved with high resolution chips of

-13 -

1000% or 20002 pixels rather than with ro-
tatable cameras, vario-lenses or multi-
camera systems.

Camera Dynamics: A second sensor
problem is the insufficient dynamic of the
common CCD. The new logarithmic
CMOS-Chips (High Dynamic Range Chip)
promise a way out of this dilemma. These
chips will help us on sunny days to see
structures in the shadowed areas as well
as at night-time, when bright lights glare
into the camera and confuse the auto-
matic camera control.

Application Specific Hardware: Another
important problem we have to solve in
order to bring intelligent vision systems to
the market is the price of the appropriate
hardware. Analogue chips for early vision
steps and modern FPGA technology are
possible solutions for future mobile vision
systems. We are currently investigating
the possibility of using these programma-
ble arrays in order to speed up edge de-
tection and the sketched distance trans-
form.

Besides these technical issues, there are
important legal (i.e. liability) and accep-
tance issues which need to be resolved
before vehicles with an Intelligent
Stop&Go system can be driven downtown
by our customers.
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