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Abstract

This paper presents a novel approach to pedestrian clas-
sification which involves utilizing the synthesized virtual
samples of a learned generative model to enhance the clas-
sification performance of a discriminative model. Our gen-
erative model captures prior knowledge about the pedes-
trian class in terms of a number of probabilistic shape
and texture models, each attuned to a particular pedestrian
pose. Active learning provides the link between the genera-
tive and discriminative model, in the sense that the former is
selectively sampled such that the training process is guided
towards the most informative samples of the latter.

In large-scale experiments on real-world datasets of
tens of thousands of samples, we demonstrate a signif-
icant improvement in classification performance of the
combined generative-discriminative approach over the
discriminative-only approach (the latter exemplified by a
neural network with local receptive fields and a support vec-
tor machine using Haar wavelet features).

1. Introduction

The ability to automatically detect pedestrians in images
is key for a number of application domains such as surveil-
lance and intelligent vehicles. Large variations in pedestrian
appearance (e.g. clothing, pose) and environmental condi-
tions (e.g. lighting, background) make this problem partic-
ularly challenging. A typical approach starts by identifying
regions of interest in the image using a computationally ef-
ficient method (e.g. background subtraction, motion detec-
tion, obstacle detection) and thereafter moves on to a more
expensive pattern classification step [8, 23, 31]. In this pa-
per, we focus on the classification step, see also [5, 18].

Recently, an experimental study on pedestrian classifica-
tion investigated the combination of several state-of-the-art
features and classifiers [21]. Some combinations performed
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Figure 1. Framework overview. Utilizing the synthesized samples
of a learned generative model to enhance the classification perfor-
mance of a discriminative model.

better than others, but interestingly, the benefit obtained by
selecting the best combination was less pronounced than the
gain obtained by increasing the training set (even though
the latter was already quite large, involving many thou-
sands of training samples). Methods to acquire additional
training samples of the non-target class are commonly used
[21, 23, 27], although it was observed that the performance
tends to saturate fairly quickly, after a few bootstrapping it-
erations. The enlargement of the training set with respect
to the target class yielded more gain [21], but this usually
requires time consuming (and thus costly) manual labeling.

This paper proposes a novel combined generative-
discriminative approach to pedestrian classification, aimed
at addressing the bottleneck caused by the scarcity of sam-
ples of the target class. A generative model is learned from
a pedestrian dataset captured in real urban traffic and used



to synthesize virtual samples of the target class, thus en-
larging the training set of a discriminative pattern classifier
at little cost. This set of virtual samples can be considered
as a regularization term to the real data to be fitted, which
incorporates prior knowledge about the target object class.
The paper proposes the use of selective sampling, by means
of probabilistic active learning, to guide the training process
towards the most informative samples. See Figure 1.

The general idea is independent of the particular genera-
tive and discriminative model used, and can in principle ex-
tend to other object classes than pedestrians. In this paper,
we propose a generative model which consists of a number
of probabilistic shape and texture models, each attuned to
a generic object pose. For this, we require the existence of
a registration method amongst samples associated with the
same generic pose. Our use of active learning furthermore
requires a confidence measure associated with the output of
the discriminative model, but this assumption is easily met
in practice.

2. Previous Work

A sizeable body of literature exists on the acquisition of
object models from training data. Roughly, these models
can be categorized into generative and discriminative mod-
els, see [29]. Generative models capture the (unknown) data
generation process by representing the appearance of an ob-
ject class in terms of its class-conditional density function.
Using associated prior distributions, posterior probabilities
for object classification can be inferred using Bayes rule. In
contrast, discriminative models directly approximate poste-
rior probabilities by learning the parameters of a discrim-
inant function (decision boundary) between object classes.
Regarding object classification, discriminative models are
typically faster and more robust with regard to the predic-
tion of class labels. On the other hand, generative models
can handle partially labeled data and allow to synthesize
new examples [29].

A main representative of generative models are linear
shape models [3], learned from a set of training shapes,
given the existence of an appropriate registration method.
Extensions to cover non-rigid shape deformations involved
using a single global shape model in combination with non-
linear PCA techniques [25, 26] or a probabilistic model
[4], as well as the use of multiple local-linear shape mod-
els [7, 11]. Other work considered joint linear shape and
texture models [3, 6, 15] to capture underlying dependen-
cies in a principled way. For this, texture models are de-
rived from shape-normalized examples. The downside of
the joint shape-texture approach is that it requires data nor-
malization procedures and that it results in a significantly
increased feature space dimensionality. Recently, layered
shape-texture models have been introduced to add addi-
tional robustness against missing features and substantial

Authors Shape Model Texture Model Sample
Plausibility
Cootes et al. [3] global linear global linear limit on
Fan et al. [6] (PCA) (PCA) deviation from
Jones et al. [15] mean
Jones et al. [14] multi-layer multi-layer limit on
global linear global linear deviation from
(weighted PCA) (weighted PCA) mean
Gavrila et al. [7] pose-specific lin- - limit on
Heapetal. [11] ear (PCA) deviation from

mean

Romdhani et al.
[25]

global non-linear
(Kernel PCA)

limit on
deviation from
mean

Sozou et al. [26]

global non-linear

limit on

(polynomial deviation from
regression) mean
Cootes et al. [4] global linear - probabilistic
(PCA) (GMM)
current paper pose-specific pose-specific probabilistic
linear (PCA) linear (PCA), (KDE)
decomposed

Table 1. Overview of existing and proposed generative shape and
texture models.

spatial rearrangement of object parts [14]. See Table 1.

While generative models implicitly establish a feature-
space tailored to the object class under consideration, dis-
criminative approaches to object classification involve a
combination of a feature extraction method, e.g. local re-
ceptive fields, Haar wavelets, and a pattern classification
technique, e.g. neural networks, support vector machines,
[13,21].

Several techniques which combine generative and dis-
criminative models have recently been proposed [17, 20, 28,
33]. Discriminative models have been employed to learn a
generative model in an iterative fashion [28]. One line of
research has been concerned with designing objective func-
tions which incorporate both generative and discriminative
terms, where their balance is controlled by both heuristic
[20] and probabilistic [17] weighting schemes. Further,
likelihood ratios in generative models have been replaced
by more powerful discriminative models [33].

Aside from the particular models used, incorporating
prior knowledge about the target class has been suggested
as a way out of the bias-variance dilemma to increase
robustness [22]. Prior knowledge can be both incorpo-
rated directly into the error function of a discriminative
model (vicinal risk minimization) [30] and during training
in terms of enlarging the training set with additional sam-
ples [21, 23, 24, 27, 30, 31]. While virtual samples of the
non-target class can be easily collected using bootstrapping
[21, 23, 27, 31], acquiring additional target class samples
is typically burdensome. Besides the trivial approach of la-
borious manual labeling, a number of techniques to synthe-
size virtual patterns of the target-class have been proposed.
Some require controlled data acquisition (e.g. same indi-
vidual with respect to changes in viewpoint, facial expres-
sion and lighting) to obtain prototypical images to be lin-
early combined [1, 2, 9]. Others utilize explicit 3D models



[12]. If such prerequisites cannot be satisfied, the synthesis
of virtual examples has been limited to simple geometric
and photometric jittering in terms of adding mirrored, ro-
tated, shifted or intensity-manipulated versions of the orig-
inal training patterns [21, 24, 27, 30].

Finally, relevant to current work are sampling techniques
which assess the information content of training samples
and select the most informative training examples by boot-
strapping [21, 23, 27, 31] or active learning [10, 16, 19].

The contributions of this paper are twofold. We con-
sider our main contribution to be the novel framework il-
lustrated in Figure 1. A learned generative model is used
to enhance the performance of a discriminative model in
terms of synthesizing virtual training samples combined
with active learning. This is quite unlike previous com-
bination strategies for generative and discriminative mod-
els [17, 20, 28, 33] and unlike previous applications of ac-
tive learning. We neither require controlled data acquisition
[1, 2, 9], nor do we have 3D models [12] to our disposition.
At the same time, we go beyond the synthesis of samples
based on simple transformations [21, 24, 27, 30] and take
into account sample probabilities.

A secondary contribution concerns the generative pedes-
trian model proposed, see Table 1. Similar to [7, 11], our ap-
proach uses separate feature-spaces to model topologically
diverse shapes (e.g. pedestrian with feet apart and with feet
closed), in order to increase model specificity. However,
we extend the shape representation of [7, 11] with a texture
component, distinguishing between texture variations at the
coarse and the detail level. We establish a statistical shape-
texture model along with the associated class-conditional
density functions. This provides a sound basis for the syn-
thesis of virtual pedestrian samples by means of three com-
ponents: foreground shape, foreground texture and back-
ground texture.

3. Generative Pedestrian Model

Input to our pedestrian model is a set D of pedestrians
(x;,wo) € D with class label wy. We apply an integrated
shape registration and clustering approach [7] to obtain a set
of K view-specific clusters, Uy, from the shapes underlying
D, with prototype shapes py (we use K = 12 in the exper-
iments). See Figure 1. Let x;, ; denote the ¢-th example in
the k-th pose-specific cluster Wy, with i = 1,... Ni. A
pedestrian sample xj, ; = (Sk,;, tr,;) © by, is represented
as the composition @ of a foreground texture t ; over a
background by ;, partitioned by a discrete shape contour
Sk i

The introduction of pose-specific feature-spaces ¥, ef-
fectively reduces correlations between pedestrian texture
and their pose or heading. Within each pose-specific space,
a generative model is instantiated describing the pedes-
trian class-conditional density function for the shape and

a) b) c) ' d) .

Figure 2. Shape registration. a) - ¢) automatically determined con-
tour point correspondences, d) Delaunay triangulation

foreground texture component separately. Foreground and
background are assumed uncorrelated, thus the background
texture component by, is not included into the generative
model.

We now outline the learning procedure for the proposed
pose-specific generative pedestrian shape-texture model in-
volving the setup of separate shape and texture model-
spaces, as well as the estimation of the class-conditional
densities therein.

Shape Model-Space As a result of shape registration, [7],
it is possible to embed the shapes within a cluster ¥y, into
a common feature-space. The features involve the pixel co-
ordinates of corresponding points sampled at a given (arc-
length normalized) distance along the contour. See Figure
2a-c. PCA is applied to the shape space to obtain a com-
pact representation utilizing Vg, dimensions (e.g. to model
95% of the total variance). The parametric representation
mg, , of a pedestrian shape s ; in terms of shape model
coordinates is given by

mg, , = 8L (sp; —5p). (1)

Here, §;, denotes the mean shape within Wy, and <I>Sk is a
matrix containing N, eigenvectors in its columns.

Foreground Texture Model-Space To establish a fore-
ground texture feature-space within each cluster Wy, all tex-
ture vectors ty, ; are first shape-normalized to t k. by warp-
ing them with respect to the cluster prototype py, see Figure
3. A Delaunay triangulation-based piecewise-affine warp-
ing function W, . is employed, utilizing shape correspon-
dences between shape s;, ; and prototype pj, to map trian-
gles (Figure 2):

i = Wa,, (br0) 2

Shape-normalization can be seen as a partial linearization of
non-linear interdependencies within each pose-specific tex-
ture feature-space resulting from (slightly) different body
poses and headings.

As done before, PCA is applied to establish a parametric
texture model-space representation of € k,; in terms of mean

t;, and eigenvectors @, :
k

mg, , = @7 (E0 -~ ) 3)

ki



Figure 3. Shape-normalized examples for a pose-specific sub-
space.

Figure 4 depicts the mean texture along with the first four
eigenvectors for a pose-specific texture model.

Given the scarcity of available texture samples (mean-
while subdivided by pose) and the high dimensionality of
the shape-normalized texture model-space, we cannot reli-
ably establish a generative texture model to capture a size-
able amount of variance (e.g. 95%), as done before for
shape. Using solely a subspace spanned by fewer principal
components is however not a viable option, as projection
leads to subtle texture details being washed-out, which in
large part determine pedestrian appearance. As a way out,
we propose to decompose the full N, -dimensional texture
model-space obtained by PCA into two subspaces. The first
subspace represents coarse texture components (e.g. model-
ing overall appearance of clothing parts such as trousers and
coat). Its dimensionality /g ! is selected such that a reliable
estimation of the relevant pdf from training data is possi-
ble (e.g. we model 65% of the total variance). The second
and complementary subspace captures fine texture compo-
nents. Here no pdf estimation takes place, for synthesis (see
Section 4) the associated entries are derived from particular
training samples.

Hence, the parametric model-space representation mg,

(cf. Eq. (3)) of a shape-normalized texture vector Ekﬂv is
decomposed into:

— /! 12
my, , = (mg, mf, ) o)
with
: - T ~
mi, = @0 oy ) 5)
1
mikt = (mEk i;Né +17""m£k ing ) (6)
’ k : k

Class-Conditional Density Estimation After establish-
ing K pose-specific shape and shape-normalized texture
model-spaces, we estimate the class-conditional densities
Ps,. (ms, [wo) and pg, (mj |wo) with respect to the pedes-
trian class wq within each subspace. In preliminary ex-
periments, we found Gaussian Kernel Density Estimation
(KDE) to outperform Gaussian Mixture Models (GMM),
based on the likelihood of model-fit.

Temporarily dropping the distinction between shape sy,
and texture ‘Ek, the Kernel Density estimate of the class-

mean mode 1 mode 2

mode 4

mode 3

Figure 4. Mean texture and eigenvectors for a pose-specific texture
model (background masked out).

conditional densities is given by:

1 1
Ny &= det(H)

pr (mwo) = K{H(m —m,)} (7)
where /C denotes the kernel function and H represents a
diagonal matrix containing kernel bandwidths. We use
anisotropic multivariate Gaussian kernels K, with band-
widths optimized via maximum likelihood on the training
set [13], for both the shape and shape-normalized texture
space, respectively.

The class-conditional density functions ps, (mg, |wo)
and p, (m’ek |lwo) provide the basis for the proposed syn-
thesis of virtual pedestrians. As opposed to [3, 6, 15], where
plausibility has been enforced by limiting the deviation of
the model coordinates from the mean (which does not ex-
tend to a multimodal distribution), the probabilistic formu-
lation allows for a direct assessment of plausibility for a
given shape or texture vector.

4. Model-Based Virtual Pedestrian Synthesis

The model-based synthesis of virtual pedestrian samples
utilizing the proposed pose-specific generative shape and
texture models involves the variation of three components:
shape, foreground texture and background texture. See Fig-
ure 5 for an overview.

Shape Variation Model coordinates mg, J representing
a new virtual shape s;  can be sampled directly from the

generative shape model ps, (ms, [w):

m;k,j ~ DPsy (msk‘wo) ®)
Sampling the KDE estimate of ps, (ms, |wo) involves uni-
formly selecting the j-th example my, ; in model-space and
sampling from the local kernel K, centered at my, ;. Plau-
sibility of the virtual shape model coordinates is enforced
by requiring ps, (m, _|wo) > ¢s,, with s, a threshold pa-
rameter learned from the distribution of the training set so
that the large majority of training samples (e.g. 99%) are
covered.

Transforming m:w from shape model-space back to the
shape feature-space yields a new virtual shape contour:

Sj = Sk + g mg, ©)
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Figure 5. Overview of the proposed model-based pedestrian synthesis procedure within a pose-specific cluster Wy. Existing pedestrian
examples are projected onto a generative shape-texture model which is re-sampled to create virtual pedestrian samples.

The virtual shape s, ; is utilized to warp an existing pedes-
trian example into a new shape, as shown in Figure 6b.

Foreground Texture Variation Regarding the synthesis
of virtual texture samples for the pedestrian class, we uti-
lize the proposed decomposed representation of the shape-
normalized texture space in terms of coarse and detailed
components, as outlined in Section 3. The main idea is,
to employ the main modes of variation to control coarse ap-
pearance variations (e.g. individual clothing parts or global
illumination) and induce pose-specific effects of different
types of wear (e.g. closed coat vs. coat-shirt pattern, see
Figure 4 mode 2 vs. mode 4, respectively), while at the
same time retaining fine-scales details (e.g. internal body
or face contours), which are crucial for pedestrian appear-
ance.

Hence, to obtain virtual shape-normalized texture pa-
rameters m%‘ , we first sample model parameters pertain-

mg to coarse texture components m~ fI'Ol’Il the generatlve

texture model pg, (mA \wo) by unlformly selecting the j-th
example in model-space and sampling from the local kernel:

m{:J ~ Py, (m;k |wo) (10)
Similar to the way the shape component is addressed, plau-
sibility is enforced by applying a coverage threshold c;,
(e.g. 99% coverage), with pg, (m- |wo) > ¢;, - Model pa-
rameters mhk _ representing the or1g1na1 shape-normalized

texture detallsJ of the j-th example mg, ~ are retained and
combined with the synthesized coarse model coordinates
m{; _toyield (cf. Eq. (4)):

m; = (m; m{ ) (11)

Thereafter, m€ is projected from the model-space back to

k,j
the feature-space of shape-normalized texture:

Finally, the inverse of the shape-normalization operator,
WSEI_, is applied to warp the virtual shape-normalized tex-
J

ture t* to a shape sy ; (which can be a new virtual shape

or an existing shape) within the same pose-specific model
(cf. Eq. (2)): -
th; = W' () (13)

An example of this technique is depicted in Figure 6c-e.
Note how fine-scale details, e.g. the internal contour of the
right arm (Figure 6¢-e, first row) are preserved, while the
overall texture exhibits sensible variations.

Background Texture Variation The background texture
component is assumed independent from pedestrian ap-
pearance and is represented by a non-parametric exemplar-
based model. Virtual background texture vectors by, ; are
uniformly sampled ¢/ from a set of non-pedestrian images
B that can be obtained at low cost:

kg ~ UDB) (14)

Application-specific constraints regarding likely target lo-
cations (e.g. flat-world assumption, people standing on the
ground) can be incorporated at this point.

Joint Variation and Compositing Joint variation of
shape, foreground and background texture involves sam-
pling virtual examples for each component. Virtual tex-
ture t; ; is sampled from the generative texture model
P, (m’fk|w0) (cf. Egs. (10)-(13)) and warped to a vir-
tual shape sj; ;, sampled from the generative shape model
ps,. (mg, |wo) (cf. Egs. (8)-(9)). Finally, background b
is sampled from the the non-parametric background model
(cf. Eq. (14)) and a virtual pedestrian example xk is ob-
tained by compositing the textured pedestrian shape over
the background, see Figure 6:

Xy, ; = (St th;) ® bp; (15)

5. Probabilistic Selective Sampling

A probabilistic least-certain querying scheme, an in-
stance of an active learning algorithm [10, 16, 19], is uti-
lized to directly link the discriminative with the generative
model in terms of assessing the information content of vir-
tual pedestrian samples. Resampling a generative model al-
lows to create a virtually infinite number of training sam-
ples for a discriminative model. Here, selective sampling



Figure 6. Example of virtual pedestrian synthesis. a) original
pedestrian examples, b) shape variation, c) foreground texture
variation, d) - e) joint variation of shape, foreground and back-
ground texture

becomes a necessity to remove redundancy from the train-
ing set and focus the resources of the discriminative learn-
ing procedure on the examples with the highest information
content. In classification tasks, there exists a region of un-
certainty Rp, where the classification result is not unam-
biguously defined (see the hatched area in Figure 1, Active
Learning). That is, the discriminative model can learn a
multitude of decision boundaries which are consistent with
the given training patterns, but yet disagree in some regions
of the decision space. If a sample is drawn from Rp, the
size of Rp and thus the global uncertainty can be reduced.

In our probabilistic least-certain querying scheme, we
approximate R p using the probability of error for each sam-
ple x;. Given a two-class problem with classes wq (target
class) and w; (non-target class), we assume the discrim-
inative model to approximate posterior probabilities and
to make a Bayesian decision, i.e. x; is classified as wy,
if P(wo|x;) > P(w1]x;). Then, the probability of error
P(error|x;) is given by

P(error|x;) = min { P(wo|x;), P(w1|x:)} - (16)

Obviously, P(error|x;) has a peak at P(wp|x;) =
P(w1]x;) = 0.5, which represents the decision boundary.
To base uncertainty on P(error|x;), we introduce a thresh-
old © € [0,0.5] on P(error|x;) and consider only those
samples x; as informative examples, where P(error|x;) >
©. This is equivalent to putting a threshold on the absolute
difference of the posterior probabilities:

Hence, the approximation of the region of uncertainty Rp
is defined as a symmetric region centered at P(wp|x) =
P(w1]x) = 0.5, the decision boundary of the discriminative
model. This technique requires an estimate of the underly-
ing (unknown) probabilities. The outputs of many state-of-
the-art classifiers, e.g. neural networks or support vector

Pedestrians | Pedestrians Non-

(labeled) (jittered) | Pedestrians

Init. Train Set 10946 43784 82698
Test Set 13971 251478 133813

Table 2. Training and test set statistics.

machines can be converted to an estimate of posterior prob-
abilities [13, 16, 19]. We use this in our experiments.

The aforementioned selective sampling strategy is used
in an iterative scheme to link the training of the discrimina-
tive model with the generative pedestrian synthesis. In each
iteration [, the set of virtual examples D} is resampled to
Bl* by retaining only the informative samples x; € Dy, as
evaluated by the discriminative model trained on D;, using
Eq. (17). Finally, the discriminative model is retrained on
the joint dataset Dy = D; U Dy

6. Experiments

The proposed generative-discriminative framework was
tested in large-scale experiments on pedestrian classifica-
tion. Our purpose is not to establish the best absolute clas-
sification performance amongst the various state-of-the-art
methods (Section 2). Rather, our aim is to examine the rel-
ative performance gain that can be obtained by using the
proposed mixed generative-discriminative framework over
a particular discriminative-only approach. To illustrate the
generality with respect to the discriminative model used, we
considered two diverse instances: a neural network with lo-
cal receptive fields of size 5 x 5 pixels (NN/LRF) [32] and
a linear! support vector machine using Haar wavelet fea-
tures at scales of 4 x 4 and 8 x 8 pixels (Haar SVM) [23].
Results are expected to generalize to other pedestrian clas-
sifiers that are sufficiently complex to represent the large
training datasets e.g. [5, 13, 18].

See Table 2 for the datasets used. Training and test sets
contain manually labeled pedestrian bounding boxes with
additional contour labels for the training set. All training
samples are scaled to 18 x 36 pixels with a two-pixel bor-
der in order not to lose contour information. The samples
were acquired in daylight conditions from a moving vehicle
and depict non-occluded pedestrians in front of a changing
background. The non-pedestrian samples were the result
of a pedestrian shape detection pre-processing step with re-
laxed threshold setting, i.e. containing a bias towards more
“difficult” patterns, similar to [21]. Training and test set
were strictly separated: no instance of the same real-world
pedestrian appears in both training and test set, similarly for
the non-target samples. See Figure 7 for some examples of
the dataset. Discriminative models trained on this dataset
are referred to as base classifiers.

Itraining a non-linear SVM on our large datasets was not feasible due
to excessive memory requirements



Figure 7. Dataset overview. a) training set examples, b) test set ex-
amples. Top and bottom rows show target and non-target samples,
respectively.

We examine the effect of introducing jittering to pedes-
trian training samples; this represents the applicable state-
of-the-art, see Section 2. Geometric jittering is introduced
in terms of creating four patterns from each pedestrian sam-
ple in the training set by applying a random shift (+2 pix-
els) and mirroring. Since we employ contrast normalization
during training of the classifiers, photometric jittering is not
considered. Discriminative models utilizing this dataset are
referred to as jittered classifiers.

In all experiments with our mixed generative-
discriminative framework (Figure 1), we perform several
iterations of virtual sampling and discriminative model
retraining, up to performance saturation. In each such
iteration, the training set is extended by 10946 synthesized
pedestrians (plus additional four jittered versions of each
virtual pedestrian), guided by selective sampling (Eq. (17)),
with © = 0.35. For the case of non-targets, we perform
a similar iterative dataset extension approach (4 x 10946
samples, now obtained by selective sampling on images not
containing targets, without jittering).

In a first experiment with a NN/LRF classifier (Figure
8a), the number of non-target training samples is kept con-
stant and the benefit of jittering and virtual pedestrian syn-
thesis is studied. From Figure 8a one observes that jitter-
ing leads to a significant performance improvement over
the base classifier (more jittered samples did not yield fur-
ther improvement). Yet we obtained additional performance
gain using the proposed framework, by incrementally incor-
porating shape, foreground and background texture varia-
tion.

Furthermore, we compare target-class resampling in-
volving joint shape, foreground and background variation
(the best performing synthesis variant in Figure 8a) to non-
target class resampling, see Figure 8b and 8c. The total per-
formance gain by adding non-target training samples only
is significant, yet less than in the case of augmenting the
pedestrian set only (Figure 8b and 8c, magenta vs. green
curve). Best performance is reached by joint augmentation
of the pedestrian and non-pedestrian class. This variant sat-
urated after three iterations, compared to two iterations for
all others.

Joint Virtual Sample Generation Strategies (NN/LRF)
0.95 : ‘ : : 8

0.851
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Figure 8. ROC performance for classification experiments. a) vir-
tual pedestrian synthesis (NN/LRF), b)+c) target class vs. non-
target class resampling for NN/LRF and Haar SVM

For comparison, we added 10946 real pedestrian sam-
ples plus four jittered versions, manually labeled from an
auxiliary data pool, to the base dataset (without synthetic
samples and active learning). Remarkably, the proposed
generative-discriminative framework even outperforms the
manual approach (see Figure 8b and 8c, green vs. red cir-
cled curve). This is not an aberration caused by overfit-
ting; the datasets used are truly large. Rather, it is the



consequence of the fact that, although the manually la-
beled samples are more realistic, they are not necessarily
more informative (we tediously label samples that the clas-
sifier already knows). Of course, the aim of our proposed
generative-discriminative framework is to avoid this addi-
tional manual labeling in the first place.

We finally note that, although absolute performances for
the two considered discriminative models are different, the
relative order in which the various resampling techniques
perform is identical, see Figure 8b vs. Figure 8c.

7. Conclusion

This paper presented a novel framework for pedestrian
classification which involves utilizing the synthesized sam-
ples of a learned generative model to enhance the classifi-
cation performance of a discriminative model. In extensive
experiments, we obtained the non-trivial result that classifi-
cation performance is substantially enhanced by the aug-
mented training set; the false positive rate of the mixed
generative-discriminative approach was reduced by up to a
factor of two compared to discriminative-only approach, at
the same detection rate. Our approach also outperformed
classifiers bootstrapped by non-target data or by jittered
samples of the target class. We take this as evidence of the
strength of our generative pedestrian model and selective
sampling method. Future work involves applying the pro-
posed framework to other object classes.
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