1609.06666v1 [cs.RO] 21 Sep 2016

arxXiv

Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient
Convolutional Neural Networks

Martin Engelcke, Dushyant Rao, Dominic Zeng Wang, Chi Hay Tong, Ingmar Posner

Abstract— This paper proposes a computationally efficient
approach to detecting objects natively in 3D point clouds
using convolutional neural networks (CNNs). In particular, this
is achieved by leveraging a feature-centric voting scheme to
implement novel convolutional layers which explicitly exploit
the sparsity encountered in the input. To this end we exam-
ine the trade-off between accuracy and speed for different
architectures and additionally propose to use an L£; penalty
on the filter activations to further encourage sparsity in the
intermediate representations. To the best of our knowledge, this
is the first work to propose sparse convolutional layers and £,
regularisation for efficient large-scale processing of 3D data. We
demonstrate the efficacy of our approach on the KITTI object
detection benchmark and show that Vote3Deep models with as
few as three layers outperform the previous state of the art in
both laser and laser-vision based approaches across the board
by margins of up to 40% while remaining highly competitive
in terms of processing time.

I. INTRODUCTION

3D point cloud data is ubiquitous in mobile robotics
applications such as autonomous driving, where efficient and
robust object detection is pivotal for planning and decision
making. Recently, computer vision has been undergoing
a transformation through the use of convolutional neural
networks (CNNs) (e.g. [1], [2], [3], [4]). Methods which
process 3D point clouds, however, have not yet experienced a
comparable breakthrough. We attribute this lack of progress
to the computational burden introduced by the third spatial
dimension. The resulting increase in the size of the input
and intermediate representations renders a naive transfer of
CNNs from 2D vision applications to native 3D perception
in point clouds infeasible for large-scale applications. As a
result, previous approaches tend to convert the data into a 2D
representation first, where nearby features are not necessarily
adjacent in the physical 3D space — requiring models to
recover these geometric relationships.

In contrast to image data, however, typical point clouds
encountered in mobile robotics are spatially sparse, as most
regions are unoccupied. This fact was exploited in [5],
where the authors propose Vote3D, a feature-centric voting
algorithm leveraging the sparsity inherent in these point
clouds. The computational cost is proportional only to the
number of occupied cells rather than the total number of
cells in a 3D grid. [5] proves the equivalence of the voting
scheme to a dense convolution operation and demonstrates
its effectiveness by discretising point clouds into 3D grids
and performing exhaustive 3D sliding window detection with

Authors are from the Mobile Robotics Group, University of Oxford.
{firstname}@robots.ox.ac.uk

Object Detections

Input Point Cloud CNNs

(b) Reference image

Fig. 1. The result of applying Vote3Deep to an unseen point cloud from
the KITTI dataset, with the corresponding image for reference. The CNNs
apply sparse convolutions natively in 3D via voting. The model detects cars
(red), pedestrians (blue), and cyclists (magenta), even at long range, and
assigns bounding boxes (green) sized by class. Best viewed in colour.

a linear Support Vector Machine (SVM). Consequently, [5]
achieves the current state of the art in both performance and
processing speed for detecting cars, pedestrians and cyclists
in point clouds on the object detection task from the popular
KITTI Vision Benchmark Suite [6].

Inspired by [5], we propose to exploit feature-centric
voting to build efficient CNNs to detect objects in point
clouds natively in 3D — that is to say without projecting the
input into a lower-dimensional space first or constraining the
search space of the detector (Fig. [T). In addition, in order to
leverage the computational benefits associated with sparse in-
puts throughout the entire CNN stack, we encourage sparsity

in the inputs to intermediate layers by imposing an £; model
regulariser. This enables our approach, named Vote3Deep, to
use sparse convolutions for learning high-capacity, non-linear
models while providing constant-time evaluation at test-time,
in contrast to non-parametric methods.

To the best of our knowledge, this is the first work to
propose sparse convolutional layers based on voting and £4
regularisation for efficient processing of 3D data at scale. In
particular, the contributions of this paper can be summarised
as follows:

1) the construction of efficient convolutional layers as
basic building blocks for CNN-based point cloud pro-
cessing by leveraging a voting mechanism exploiting
the inherent sparsity in the input data;

2) the use of rectified linear units and an £ sparsity
penalty to specifically encourage data sparsity in in-
termediate representations in order to exploit sparse
convolution layers throughout the entire CNN stack.

We demonstrate that Vote3Deep models with as few as
three layers achieve state-of-the-art performance amongst
purely laser-based approaches across all classes consid-
ered on the popular KITTI object detection benchmark.
Vote3Deep models exceed the previous state of the art in
3D point cloud based object detection in average precision
by a margin of up to 40% while remaining competitive in
terms of processing time.

II. RELATED WORK

A number of works have attempted to apply CNNs in the
context of 3D point cloud data. A CNN-based approach in
[7] obtains comparable performance to [5] on KITTI for car
detection by projecting the point cloud into a 2D depth map,
with an additional channel for the height of a point from the
ground. The model predicts detection scores and regresses
to bounding boxes. While the CNN is a highly expressive
model, the projection to a specific viewpoint discards infor-
mation, which is particularly detrimental in crowded scenes.
It also requires the network filters to learn local dependencies
with regards to depth by brute force, information that is
readily available in a 3D representation and which can be
efficiently extracted with sparse convolutions.

Dense 3D occupancy grids computed from point clouds
are processed with CNNs in [8] and [9]. With a minimum
cell size of 0.1m, [8] reports a speed of 6ms on a GPU for
their slowest model to classify a single crop with a grid-
size of 32 x 32 x 32 cells. In addition, it takes up to 0.5s
to convert 200,000 points into an occupancy grid. When
restricting point clouds from the KITTI dataset to the field
of view of the camera, a total of 20,000 points are typically
spread over 2 x 10° grid cells with a resolution of 0.2m as
used in this work. Naively evaluating the classifier of [8]
at all possible locations would therefore approximately take
6x 1073 x2x 10%/8 = 1, 500s, accounting for the reduction
in resolution and ignoring speed ups from further parallelism
on a GPU. Similarly, a processing time of up to 5ms per m3
for detecting landing zones is reported in [9].

A alternative approach that takes advantage of sparse
representations can be found in [10] and [11] who apply
sparse convolutions to relatively small 2D and 3D crops
respectively. While the convolutional kernels are only applied
at sparse feature locations, the presented algorithm still
has to consider neighbouring values which are either zeros
or constant biases, leading to unnecessary operations and
memory consumption. Another method for performing sparse
convolutions is introduced in [12] who use “permutohedral
lattices” and bilateral filters with trainable parameters.

CNNs have also been applied to dense 3D data in biomed-
ical image analysis (e.g. [13], [14], [15]). A 3D equivalent
of residual networks [4] is utilised in [13] for brain image
segmentation. A cascaded model with two stages is proposed
in [14] for detecting cerebral microbleeds. A combination of
three CNNs is suggested in [15]. Each CNN processes a
different 2D image plane and the three streams are joined in
the last layer. These systems run on relatively small inputs
and in some cases take more than a minute for processing a
single frame with GPU acceleration.

III. METHODS

Vote3Deep performs efficient, large-scale, multi-instance
object detection with CNNs natively in 3D point clouds.
The first step is to convert the point cloud to a discrete
3D representation. In our work, a point cloud is discretised
into a 3D grid as in [5]: For each cell that contains a non-
zero number of points, a feature vector is extracted based
on the statistics of the points in the cell. The feature vector
holds a binary occupancy value, the mean and variance of
the reflectance values and three shape factors. Cells in empty
space are not stored which leads to a sparse representation.

We employ the voting scheme from [5] to perform a sparse
convolution across this native 3D representation, followed
by a ReLU non-linearity, which returns a new sparse 3D
representation. This process can be repeated and stacked
as in a traditional CNN. Finally, the output layer predicts
confidence scores that indicate the presence of an object.

As in [5], to handle objects at different orientations, the
CNN is run over a point cloud at N different angular orienta-
tions in N parallel threads. This allows objects with arbitrary
pose to be handled at a minimal increase in computation
time. Duplicate detections are pruned with non-maximum
suppression (NMS) in 3D space. NMS in 3D is better able to
handle objects that are behind each other as the 3D bounding
boxes overlap less than their projections into 2D.

A. Sparse Convolutions via Voting

When running a dense 3D convolution across a discretised
point cloud, most of the computation time is wasted as
the majority of operations are multiplications by zero. The
additional third spatial dimension makes this process even
more computationally expensive compared to 2D convolu-
tions, which form the basis of image-based CNNs. Using the
insight that meaningful computation only takes place where
the 3D features are non-zero, [5] introduce a feature-centric
voting scheme. The basis of this algorithm is the idea of

. 0|0 o1 |1 111
1 of1|o0 0Ol1|0 1
111]0 0|0 . 0.5
05 Convolutional Voting 0.5
weights weights 1
Input grid Result
Fig. 2. An illustration of the voting procedure on a 2D example sparse

grid. The voting weights are obtained by flipping the convolutional weights
about each dimension. Whereas a standard convolution applies the filter at
every location in the input, the equivalent voting procedure only needs to be
applied at each non-zero location and obtains an identical result. While this
illustration is in 2D for just one feature map, the actual voting procedure is
on a 3D grid with several feature maps. For a full mathematical justification,
the reader is referred to [5]. Best viewed in colour.

letting each non-zero input feature vector cast a set of votes,
weighted by the filter weights, to its surrounding cells in
the output layer, as defined by the receptive field of the
filter. The weights used for voting are obtained by flipping
the convolutional filter kernel along each spatial dimension.
The final convolution result is then simply obtained by
accumulating the votes falling into each cell of the output
layer (Fig. [2).

This procedure can be formally stated as follows. Without
loss of generality, assume we have one 3D convolutional
filter in network layer ¢ with odd-valued side lengths, op-
erating on a single input feature, with the filter weights
denoted by w¢ € RGIHD*(2J+1)x(2K+1) Then, for an input
grid he=! € REXMXN " the convolution result at location
(I,m,n) is given by:

I J K
c _ c c—1 c
Zl,m,n - Z Z Z wi,j,k hl+i,m+j,n+k +b (1)

i=—1 j=—J k=—K

where b° is a bias value applied to all cells in the grid. This
operation needs to be applied to all L x M x N locations
in the input grid for a regular dense convolution. In contrast
to this, given the set of cell indices for all of the non-zero
cells ® = {(I,m,n) V hl(;jn # 0}, the convolution can be
recast as a feature-centric voting operation, with each input
cell casting votes to increment the values in neighbouring
cell locations according to:

hc—l (2)

Zf—l—i,m-&-j,n-i—k = Zlc+i,7rL+j,7z+k + wc—i,—j,—k l,m,n
which is repeated for all tuples (I,m,n) € ® and where
{i,j,keZ|iec [-I1,I],j€ [-J,J],ke [-K,K]}.

The voting output is passed through a ReL.U non-linearity
which discards non-positive features as described in the next
subsection. The biases are constrained to be non-positive as
a single positive bias would return an output grid in which
almost every cell is occupied with a non-zero feature vector,
hence completely eliminating sparsity. The bias b¢ therefore
only needs to be added to each non-empty output cell.

With this sparse voting scheme, the filter only needs to
be applied to the occupied cells in the input grid, rather
than convolved over the entire grid. The full algorithm
is described in more detail in [5], including formal proof

that feature-centric voting is equivalent to an exhaustive
convolution.

B. Maintaining Sparsity with ReLUs

When stacking multiple sparse 3D convolution layers to
build a deep neural network, it is necessary to maintain
sparsity in the intermediate representations. With additional
convolutional layers, however, the receptive field of the
network grows with each layer. This means that an increasing
number of cells receive votes which progressively decreases
sparsity higher up in the representation hierarchy. A simple
way to counteract this behaviour is to follow a sparse con-
volution layer by a rectified linear unit (ReLU) as advocated
in [16], which can be written as:

h¢ = max (0, 2°) 3)

with z¢ being the input to the ReLU non-linearity in layer
c as typically computed by a sparse convolution, and h°
being the output, denoting the hidden activations in the sparse
intermediate representations.

In this case, only features that have a value greater than
zero will be allowed to cast votes in the next sparse convo-
lution layer. In addition to enabling a network to learn non-
linear function approximations, ReLUs effectively perform a
thresholding operation by discarding negative feature values
which helps to maintain sparsity in the intermediate repre-
sentations. Lastly, another advantage of ReLUs compared to
other non-linearities is that they are fast to compute.

IV. TRAINING

Based on the premise that bounding boxes in 3D space
are similar in size for object instances of the same class, we
simply assume a fixed-size bounding box for each class. A
set of fixed 3D bounding box dimensions is selected for each
class, based on the 95'" percentile ground truth bounding box
size over the training set. The receptive field of a network
should be at least as large as this bounding box, but not
excessively large so as to waste computation. We therefore
train three separate networks which can be run in parallel at
test time, each with a different receptive field, and specialised
for detecting a certain class. It is possible, however, to share
computation and features in the lower layers followed by a
class-specific output layer; a task left for future work.

Fixed-size bounding boxes imply that networks can be
straightforwardly trained on 3D crops of positive and nega-
tive examples whose dimensions equal the receptive field size
of a network. While processing point clouds with several
angular bins allows us to handle objects with different
poses to some degree, we augment the training data by
randomly rotating the original front-facing positive training
examples by an angle that is smaller than the resolution of
the angular bins. Similarly, we also augment the training
data by randomly translating positive training examples by
a distance smaller than the 3D grid cell size to account
for discretisation effects. Negative training examples are
obtained by performing hard negative mining periodically,
after a fixed number of training epochs.

TABLE I
THE FIVE DIFFERENT NETWORK ARCHITECTURES THAT ARE COMPARED.
“RF” EQUALS THE KERNEL SIZE THAT GIVES THE DESIRED TOTAL
RECEPTIVE FIELD FOR THE MODEL.

Model Layer 1 Layer 2 Layer 3
A RF - -
B 3x3x3 RF -
C 5x5x5 RF -
D 3x3x3 3x3x3 RF
E 5x5x5 3x3x3 RF
Output Scores
[yi.]'.k] L—ﬂ Ry w3 € RRFx8x1
- | RF € R?
2 2 I
[hi,j,k,l hi,j,k,S] I D
W2 € R3X3X3X8X8
T
1 1 =
[hi,j,k,l hi,j,k,S] L@ «
- Wl € R3><3><3><6><8
—)
[xi,j,k,l xi,j,k,6] L_@

Input Grid

Fig. 3. Illustration of the “Model D™ architecture from Table[l} The input x
(green) and the intermediate representations h€ (blue) for layer c are sparse
3D grids, where each occupied spatial location holds a feature vector (solid
cubes). The sparse convolutions with the filter weights w€ are performed
natively in 3D to compute the predictions (red). Best viewed in colour.

The class-specific networks are binary classifiers so we
choose a linear hinge loss for training due to its maximum
margin property. The hinge loss, £o weight decay and in
some cases an L; sparsity penalty are used to train the
networks with stochastic gradient descent. Both the L,
weight decay as well as the L£; sparsity penalty serve as
regularisers. The sparsity penalty in addition encourages
the network to learn sparse intermediate representations to
reduce the computation cost.

A. Linear Hinge Loss

Given an output detection score § € R and a class label
y € {—1,1} distinguishing between positive and negative
samples, the hinge loss is formulated as:

L(0) =max (0,1 —7-y) 4)

where 6 denotes the parameters of the network.

The loss in Eq. 4] is zero for positive samples that score
over 1 and negative samples that score below —1. As such,
the hinge loss drives sample scores away from the margin
given by the interval [—1,1]. As with standard CNNs, the
L1 hinge loss can be backpropagated through the network
to compute the gradients with respect to the weights, and
subgradients can be computed at the discontinuities.

B. L1 Sparsity Penalty

The ability to perform fast voting is predicated on the
assumption of sparsity in the input to each layer. While
the input point cloud is sparse, the regions of non-zero
cells are dilated in each successive layer, approximately by
the receptive field size of the corresponding convolutional
filters. It is therefore prudent to encourage sparsity in each
layer, such that the model only utilises features if they are
absolutely necessary for the detection task.

The £, loss has been shown to result in sparse represen-
tations in which several values are exactly zero [17], which
is precisely the requirement for this model. Whereas the
sparsity of the output layer can be tuned with a detection
threshold, we encourage sparsity in the intermediate layers
by incorporating a penalty term using the £; norm of each
feature activation.

V. EXPERIMENTS
A. Dataset

We use the well-known KITTI Vision Benchmark Suite
[6] for training and evaluating our detection models. The
dataset consists of synchronised stereo camera and lidar
frames recorded from a moving vehicle with annotations
for eight different object classes, showing a wide variety
of road scenes with different appearances. We only use the
3D point cloud data to train and test the models. There
are 7,518 frames in the KITTI test set whose labels are
not publicly available. The labelled training data consist
of 7,481 frames which we split into two sets for training
and validation (80% and 20% respectively). The object
detection benchmark considers three classes for evaluation:
cars, pedestrians and cyclists with 28,742; 4,487; and 1,627
training labels, respectively.

B. Architectures

A range of fully convolutional architectures with up to
three layers and different filter configurations are compared
(Table [). The “Model D architecture is illustrated as an
example in Fig. [3| To exploit context around an object, the
architectures are designed so that the toral receptive field
is slightly larger than the class-specific bounding boxes.
Small 3 x 3 x 3 and 5 X 5 x 5 kernels are used in the
lower layers, followed by a ReLU non-linearity. The network
output is computed by a linear layer which is implemented
as a convolutional filter whose kernel size gives the desired
receptive field for the network for a given class.

C. Training

The networks are trained on 3D crops of positive and
negative examples. The number of positives and negatives
is initially balanced with negatives being extracted randomly
from the training data at locations that do not overlap with
any of the positives. Hard negative mining is performed every
ten epochs by running the current model across the full point
clouds in the training set. In each round of hard negative
mining, up to 10,000 of the highest scoring false positives
are added to the training set.

e
©

o
©

e
3

== A - linear
=4=B - two layers
C - two layers
“©-D - three layers
=3 E - three layers

R

Average precision

e
o

b
I3

8 16 32
Number of filters per hidden layer

(a) Cars

Average precision
o o o o
> 3 ® © -

o
o

=== A - linear
=4=B - two layers
C - two layers
“©-D - three layers
=3¢ E - three layers

gt

8 16 32
Number of filters per hidden layer

(b) Pedestrians

e
©

Average precision

o
©

e
3

—

== A - linear
=4=B - two layers
C - two layers
-© D - three layers
=¥ E - three layers

e
o

b
I3

8 16 32
Number of filters per hidden layer

(c) Cyclists

Fig. 4. Model comparison for the architecture in Table[l] showing the average precision for the moderate difficulty level. The non-linear models with two
or three layers consistently outperform the linear baseline model our internal validation set by a considerable margin for all three classes. The performance
continues to improve as the number of filters in the hidden layers is increased, but these gains are incremental compared to the large margin between the
linear baseline and the smallest multi-layer models. Best viewed in colour.

Precision
o o
i o

Precision
o o
> o

Precision

0.2 02} Easy \| 02— Easy
== =Moderate \ == =Moderate
Hard S, Hard
oL n . oL n . S W, V. 0L n . . e
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 04 0.6 0.8 1
Recall Recall Recall
(a) Cars (b) Pedestrians (c) Cyclists

Fig. 5.

Precision-Recall curves for the evaluation results on the KITTI zest set. “Model B” for cars and “Model D” for pedestrians and cyclists, all with

eight filters in the hidden layers and trained without sparsity penalty, are used for the submission to the official test server. Best viewed in colour.

The weights are initialised as proposed in [18] and trained
with stochastic gradient descent with momentum of 0.9 and
Lo weight decay of 10~* for 100 epochs with a batch size
of 16. The model from the epoch with the best average
precision on the validation set is selected for the model
comparison and the KITTI test submission in Sections [V
[E] and [V-H respectively. Other hyperparameters are tuned on
the validation set.

We implemented a custom C++ library for training and
testing. For the largest models, training takes about three
days on a cluster CPU node with 16 cores where each
example in a batch is processed in a separate thread.

D. Evaluation

The official benchmark evaluation on the KITTI test server
is performed in 2D image space. We therefore project our
3D detections into the 2D image plane using the provided
calibration files and discard any detections that fall outside
of the image. The KITTI benchmark differentiates between
easy, moderate and hard test categories depending on the
bounding box size, object truncation and occlusion. An
average precision score is independently reported for each
difficulty level and class. The easy test examples are a subset
of the moderate examples, which are in turn a subset of the
hard examples. The official KITTI rankings are based on the
performance on the moderate cases. Results are obtained for
a variety of models on the validation set, and selected models
for each class are submitted to the KITTTI test server.

E. Model Comparison

Fast detection speeds are particularly important in the
context of urban transport. As larger, more expressive models
come at a higher computational cost and consequently run at
slower speeds, this section investigates the trade-off between
detection performance and model capacity on the validation
set. Five architectures are benchmarked against each other
with up to three layers and different numbers of filters in the
hidden layers (Fig.). These models are trained without the
L, penalty which is discussed later in Section

The non-linear, multi-layer networks clearly outperform
the linear baseline, which is comparable to [5]. First and
foremost, this demonstrates that increasing the complexity
and expressiveness of the models is extremely helpful for
detecting objects in point clouds.

Even though performance improves with the number of
convolutional filters in the hidden layers, the resulting gains
are comparatively moderate. Similarly, increasing the re-
ceptive field of the filter kernels, while keeping the total
receptive field of the networks the same, does not improve
the performance. It is possible that these larger models are
not sufficiently regularised. Another potential explanation is
that the easy interpretability of 3D data enables even these
relatively small models to capture most of the variation in
the input representation which is useful for solving the task.

TABLE I
AVERAGE PRECISION IN % ON THE KITTI TEST SET FOR METHODS ONLY USING POINT CLOUDS

Cars Pedestrians Cyclists

Processor Speed Easy Moderate Hard Easy Moderate ~ Hard Easy Moderate ~ Hard
Vote3Deep 4-core 2.5GHz CPU 1.5s 76.79 68.24 63.23 68.39 55.37 52.59 79.92 67.88 62.98
Vote3D [5] 4-core 2.8GHz CPU 0.5s 56.80 47.99 42.56 44.48 35.74 33.72 41.43 31.24 28.60
VeloFCN [7] 2.5GHz GPU 1.0s 60.34 47.51 42.74 - - - - - -
CSoR 4-core 3.5GHz CPU 3.5s 3479 26.13 22.69 - - - - - -
mBoW [19] 1-core 2.5GHz CPU 10s 36.02 23.76 18.44 44.28 31.37 30.62 28.00 21.62 20.93

TABLE III

AVERAGE PRECISION IN % ON THE KITTI TEST SET FOR METHODS UTILISING BOTH POINT CLOUDS AND IMAGES AS INDICATED BY *

Cars Pedestrians Cyclists
Processor Speed Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
Vote3Deep 4-core 2.5GHz CPU 1.5s 7679 68.24 63.23 68.39 55.37 52.59 79.92 67.88 62.98
MV-RGBD-RF* [20] 4-core 2.5GHz CPU 4s 7640 69.92 57.47 73.30 56.59 49.63 52.97 42.61 37.42
Fusion-DPM* [21] 1-core 3.5GHz CPU 30s - - - 59.51 46.67 42.05 - - -

F. Test Results

From Table [, we select the “Model B” for cars, and
the “Model D” for pedestrians and cyclists, with 8 filters
per hidden layer and trained without sparsity penalty for
evaluation on the KITTI fest set. These models are selected
for their high performance at a relatively small number of
parameters. The PR curves for Vote3Deep on the KITTI test
set are shown in Figure [3

The performance of Vote3Deep is compared against the
other leading approaches for object detection in point clouds
(at the time of writing) in Table Vote3Deep establishes
new state-of-the-art performance in this category for all three
classes and all three difficulty levels. The performance boost
is particularly significant for cyclists with a margin of almost
40% on the easy test case, in some cases more than doubling
the average precision. Vote3Deep currently runs on CPU
and is about three times slower than [5] and 1.5 times
slower than [7] with the latter relying on GPU acceleration.
We expect that a GPU implementation of Vote3Deep will
further improve the detection speed. Compared to the very
deep networks commonly used in vision (e.g. [2], [3], [4]),
these relatively shallow networks trained without any of the
recently developed tricks are expressive enough to achieve
significant performance gains.

We also compare Vote3Deep against methods that utilise
both point cloud and image data in Table Despite only
using point cloud data, Vote3Deep still performs better than
these ([20], [21]) in the majority of test cases and only
slightly worse in the remaining ones at a considerably faster
detection speed. For all three classes, Vote3Deep achieves
the highest average precision on the hard test cases, which
consider the largest number of positive ground truth objects.

Interestingly, cyclist detection benefits the most from the
expressiveness of CNNs even though this class has the least
number of training examples. We conjecture that cyclists are
have a more distinctive shape in 3D compared to pedestrians

and cars, which can be more easily confused with poles or
vertical planes, respectively, and that the Vote3Deep models
are able exploit this complexity particularly well, despite the
small amount of training data.

G. Timing and Sparsity

The three models from the previous subsection are also
trained with different values for the £, sparsity penalty to
examine the effect of the penalty on detection speed and
performance on the moderate difficulty cases (Table [IV).
Larger penalties than those presented in the table tend to push
all the activations to zero. We found that selecting the models
from the epoch with the largest average precision on the
validation set tends to favour models with a comparatively
low sparsity in the intermediate representations. Thus, the
networks are all trained for 100 epochs and the models after
the final epoch are used for evaluation in order to enable
a fair comparison. The mean and standard deviation of the
detection time per frame are measured on 100 frames from
the KITTI validation set.

Unsurprisingly, pedestrians have the fastest detection time
as the receptive field of the networks is smaller compared to
the other two classes. The two-layer “Model B” is used for
cars during testing, as opposed to the three-layer “Model D”
for the other two classes, which explains why the car detector
runs faster than cyclist detector even though cars require
a larger receptive field than cyclists. The sparsity penalty
improves the detection speed by about 12% and 6% for cars
and cyclists, respectively, at a negligible difference in average
precision. For pedestrians, the two models trained without
sparsity penalty run slower and perform better than the
baseline. Notably, the benefit of the sparsity penalty increases
with the receptive field size of the network. We conjecture
that pedestrians are too small to learn representations with
a significantly higher sparsity through the sparsity penalty,
and that the drop in performance for the baseline model is a
consequence of the model selection process.

TABLE IV
DETECTION SPEED IN MILLISECONDS AND AVERAGE PRECISION

Cars Pedestrians Cyclists
Penalty Run-time AP Run-time AP Run-time AP
0 8844256 0.76 670+£169 0.7 1543+510 0.86
1074 786208 0.76 707171 0.74 15054+492 0.83
1073 8094217 0.76 681£170 0.73 1451+459 0.85

VI. CONCLUSIONS

This work performs object detection in point clouds at
fast speeds with CNNs constructed from sparse convolution
layers based on the voting scheme introduced in [5]. With
the ability to learn hierarchical representations and non-linear
decision boundaries, a new state of the art is established on
the KITTI benchmark for detecting objects in point clouds.
Vote3Deep also outperforms other methods that utilise in-
formation from both point clouds and images in most test
cases. Possible future directions include a more low-level
input representation as well as a GPU implementation of the
voting algorithm.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of
this work by the EPSRC through grant number DFR01420,
a Leadership Fellowship, a grant for Intelligent Workspace
Acquisition, and a DTA Studentship; by Google through
a studentship; and by the Advanced Research Computing
services at the University of Oxford.

REFERENCES

[11 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” Advances In Neural
Information Processing Systems, pp. 1-9, 2012.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” ICLR, pp. 1-14, 2015. [Online].
Available: http://arxiv.org/abs/1409.1556

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, vol. 07-12-June, 2015,
pp- 1-9.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” arXiv preprint arXiv:1512.03385, vol. 7,
no. 3, pp. 171-180, 2015. [Online]. Available: http://arxiv.org/pdf/
1512.03385v1.pdf

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]

[20]

[21]

D. Z. Wang and 1. Posner, “Voting for Voting in Online Point Cloud
Object Detection,” Robotics Science and Systems, 2015.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2012, pp. 3354-3361.

B. Li, T. Zhang, and T. Xia, “Vehicle Detection from 3D Lidar Using
Fully Convolutional Network,” arXiv preprint arXiv:1608.07916,
2016. [Online]. Available: https://arxiv.org/abs/1608.07916

D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural
Network for Real-Time Object Recognition,” IROS, pp. 922-928,
2015.

——, “3D Convolutional Neural Networks for Landing Zone De-
tection from LiDAR,” International Conference on Robotics and
Automation, no. Figure 1, pp. 3471-3478, 2015.

B. Graham, “Spatially-sparse convolutional neural networks,” arXiv
Preprint arXiv:1409.6070, pp. 1-13, 2014. [Online]. Available:

http://arxiv.org/abs/1409.6070
——, “Sparse 3D convolutional neural networks,” arXiv preprint

arXiv:1505.02890, pp. 1-10, 2015. [Online]. Available: http:
/larxiv.org/abs/1505.02890

V. Jampani, M. Kiefel, and P. V. Gehler, “Learning Sparse High
Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural
Networks,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2016.

H. Chen, Q. Dou, L. Yu, and P-A. Heng, “VoxResNet: Deep
Voxelwise Residual Networks for Volumetric Brain Segmentation,”
arXiv preprint arXiv:1608.05895, 2016. [Online]. Available: http:
/larxiv.org/abs/1608.05895

Q. Dou, H. Chen, L. Yu, L. Zhao, J. Qin, D. Wang, V. C. Mok, L. Shi,
and P. A. Heng, “Automatic Detection of Cerebral Microbleeds
From MR Images via 3D Convolutional Neural Networks,” IEEE
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1182-1195,
2016. [Online]. Available: http://ieeexplore.ieee.org

A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen,
“Deep feature learning for knee cartilage segmentation using a tri-
planar convolutional neural network,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 8150 LNCS, no. PART 2,
2013, pp. 246-253.

X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural
Networks,” AISTATS, vol. 15, pp. 315-323, 2011.

K. P. Murphy, Machine Learning: A Probabilistic Perspective.
press, 2012, ch. 13, pp. 423-480.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,”
arXiv preprint arXiv:1502.01852, pp. 1-11, 2015. [Online]. Available:
https://arxiv.org/abs/1502.01852

J. Behley, V. Steinhage, and A. B. Cremers, “Laser-based segment
classification using a mixture of bag-of-words,” in IEEE International
Conference on Intelligent Robots and Systems, 2013, pp. 4195-4200.
A. Gonzalez, G. Villalonga, J. Xu, D. Vazquez, J. Amores, and A. M.
Lopez, “Multiview random forest of local experts combining RGB
and LIDAR data for pedestrian detection,” in /EEE Intelligent Vehicles
Symposium, Proceedings, vol. 2015-Augus, 2015, pp. 356-361.

C. Premebida, J. Carreira, J. Batista, and U. Nunes, “Pedestrian detec-
tion combining RGB and dense LIDAR data,” in IEEE International
Conference on Intelligent Robots and Systems, 2014, pp. 4112-4117.

MIT

http://arxiv.org/abs/1409.1556
http://arxiv.org/pdf/1512.03385v1.pdf
http://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/abs/1608.07916
http://arxiv.org/abs/1409.6070
http://arxiv.org/abs/1505.02890
http://arxiv.org/abs/1505.02890
http://arxiv.org/abs/1608.05895
http://arxiv.org/abs/1608.05895
http://ieeexplore.ieee.org
https://arxiv.org/abs/1502.01852

	I INTRODUCTION
	II RELATED WORK
	III Methods
	III-A Sparse Convolutions via Voting
	III-B Maintaining Sparsity with ReLUs

	IV TRAINING
	IV-A Linear Hinge Loss
	IV-B L1 Sparsity Penalty

	V EXPERIMENTS
	V-A Dataset
	V-B Architectures
	V-C Training
	V-D Evaluation
	V-E Model Comparison
	V-F Test Results
	V-G Timing and Sparsity

	VI CONCLUSIONS
	References

