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Abstract— We propose a novel Large-Scale Direct SLAM
algorithm for stereo cameras (Stereo LSD-SLAM) that runs
in real-time at high frame rate on standard CPUs. In contrast
to sparse interest-point based methods, our approach aligns
images directly based on the photoconsistency of all high-
contrast pixels, including corners, edges and high texture areas.
It concurrently estimates the depth at these pixels from two
types of stereo cues: Static stereo through the fixed-baseline
stereo camera setup as well as temporal multi-view stereo
exploiting the camera motion. By incorporating both disparity
sources, our algorithm can even estimate depth of pixels that
are under-constrained when only using fixed-baseline stereo.
Using a fixed baseline, on the other hand, avoids scale-drift
that typically occurs in pure monocular SLAM. We furthermore
propose a robust approach to enforce illumination invariance,
capable of handling aggressive brightness changes between
frames – greatly improving the performance in realistic settings.
In experiments, we demonstrate state-of-the-art results on
stereo SLAM benchmarks such as Kitti or challenging datasets
from the EuRoC Challenge 3 for micro aerial vehicles.

I. INTRODUCTION

Visual simultaneous localization and mapping (SLAM)
under real-time constraints has traditionally been tackled
using sparse interest points, since they reduce the large
amount of pixels in images to a small amount of features.
Only recently, real-time capable direct methods have been
proposed that avoid the reliance on interest points, but instead
perform image alignment and 3D reconstruction directly on
pixels using photoconsistency constraints. The premise of
direct approaches over interest-point based methods is that
image information can be used densely. No manual design of
interest point detectors, descriptors, and matching procedures
is required, which would also restrict the SLAM algorithm to
a specific type of feature – typically only image corners are
used. Instead in direct SLAM methods, a rich set of pixels
contributes to depth estimation and mapping.

In this paper, we propose the first large-scale direct visual
SLAM approach for stereo cameras that is real-time capable
on CPUs. Our method estimates depth with uncertainty es-
timates at pixels with high intensity gradient, reconstructing
a semi-dense depth map online. It concurrently tracks the
rigid-body motion through photometric alignment of images
based on the depth maps.

In our previous work on large-scale direct monocular
SLAM (LSD-SLAM), we obtain depth in keyframes by
pixel-wise stereo between the current and the keyframe.
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Fig. 1. Stereo LSD-SLAM is a fully direct SLAM method for stereo
cameras. It runs at 30Hz on a CPU, computing accurate camera movement
as well as semi-dense probabilistic depth maps. We exploit both static and
temporal stereo and correct for affine lightning changes, making the method
both accurate and robust in real-world scenarios. Some examples are shown
in the attached video.

Camera motion is tracked towards a keyframe through pho-
tometric image alignment. For SLAM on the global scale,
keyframes are aligned towards each other and their poses
are optimized by graph optimization. Since reconstruction
scale is not observable in monocular SLAM, we additionally
optimize for the scale in direct image alignment as well as
in pose graph optimization.

In this work, we couple temporal stereo of monocu-
lar LSD-SLAM with static stereo from a fixed-baseline
stereo camera setup. At each pixel, our Stereo LSD-SLAM
method integrates static as well as temporal stereo cues
into the estimate depending on availability. This combines
the properties of monocular structure from motion with
fixed-baseline stereo depth estimation in a single SLAM
method. While static stereo effectively removes scale as a
free parameter, temporal stereo cues allow for estimating the
depth from baselines beyond the small baseline of the stereo
camera. Temporal stereo is not restricted to one specific (e.g.
horizontal) direction like static stereo. Rather its baseline
corresponds to the translational motion between frames. We
furthermore propose a method for handling illumination
changes in direct image alignment which significantly im-
proves the robustness of our algorithm in realistic settings.

We evaluate Stereo LSD-SLAM on the popular Kitti



benchmark and datasets from the EuRoC Challenge 3 for
micro aerial vehicles (MAVs), demonstrating the state-of-
the-art performance of our approach.

II. RELATED WORK

Sparse interest-point-based approaches to visual odometry
and SLAM have been extensively investigated in recent
years. The term visual odometry has been coined in the semi-
nal work of Nister et al. [1] who proposed sparse methods for
estimating the motion of monocular as well as stereo cameras
by sequential frame-to-frame matching. Chiuso et al. [2]
proposed one of the first real-time capable monocular SLAM
methods based on non-linear filtering. Davison [3] proposed
MonoSLAM, a real-time capable, EKF-based method that
demonstrated SLAM in small workspaces. Sparse interest
points are tracked in an EKF-SLAM formulation in order to
recover camera motion and the (global) 3D position of the
interest points. Another example of sparse monocular SLAM
is Parallel Tracking and Mapping (PTAM [4]) which sepa-
rates and parallelizes optimization for tracking and mapping
in a bundle adjustment framework. More recently, Strasdat
et al. [5] included scale as a parameter in a key-frame-based
optimization approach to sparse monocular SLAM.

Using a fixed-baseline stereo camera setup, scale becomes
directly observable. One early work applies EKF-SLAM on
a sparse set of interest points [6]. Paz et al. [7] combine
monocular stereo cues with fixed-baseline stereo in a sparse
hierarchical EKF-SLAM framework.

Direct methods that avoid the detection of sparse interest
points have recently attracted attention for visual SLAM.
One major advantage of direct over sparse methods is that
they do not rely on manually designed image features which
constrain the type of information that can be used in subse-
quent processing stages. In the RGB-D domain [8], [9], [10],
direct methods have become the state-of-the-art for their high
accuracy and efficiency. LSD-SLAM [11] has been the first
large-scale direct monocular SLAM method. In LSD-SLAM,
camera motion is tracked towards keyframes for which semi-
dense depth maps are estimated using probabilistic filtering.
Pose graph optimization aligns the keyframes in a glob-
ally consistent arrangement. LSD-SLAM explicity considers
scale drift in pose graph optimization and finds a single
consistent scale. For stereo cameras, a direct visual odometry
approach has been proposed by Comport et al. [12]. Their
approach does not explicitly recover depth, but uses quadrifo-
cal constraints on pixels which are in stereo correspondence
for camera motion estimation. In the direct stereo method
in [13], a disparity map is integrated over time, while the
motion of the stereo camera is tracked through direct image
alignment using the estimated depth. The keyframes in our
approach also integrate depth, while we employ probabilis-
tic filtering instead. Our approach combines fixed-baseline
stereo cues from the static camera setup with temporal stereo
from varying baselines caused by the moving camera. We
combine this with a pose-graph-based SLAM system that
globally optimizes the poses of the keyframes. A further
important contribution of our work is the correction for

Fig. 3. Each keyframe maintains a Gaussian probability distribution on
the inverse depth for all pixels that have sufficient image gradient such that
the depth can be estimated. From left to right: Intensity image, semi-dense
inverse depth map, inverse depth variance map.

affine lighting changes to enable direct image alignment
in realistic settings. Differently to previous methods [14],
[15], we optimize for affine lighting correction parameters
in an alternating fashion, which allows for different outlier
rejections schemes to be applied in image alignment and
lighting correction.

III. LSD-SLAM WITH STEREO CAMERAS

LSD-SLAM [11] is a key-frame based localization and
mapping approach which uses the following main steps:
• The motion of the camera is tracked towards a reference

keyframe in the map. New keyframes are generated if
the camera moved too far from existing keyframes in
the map.

• Depth in the current reference keyframe is estimated
from stereo correspondences based on the tracked mo-
tion (temporal stereo).

• The poses of the keyframes are made globally consis-
tent by mutual direct image alignment and pose graph
optimization.

In Stereo LSD-SLAM, the depth in keyframes is in
addition directly estimated from static stereo (see Fig. 2).
There is a number of advantages of this approach to relying
solely on temporal or solely on static stereo. Static stereo
allows for estimating the absolute scale of the world and is
independent of the camera movement. However, static stereo
is constrained to a constant baseline (with, in many cases, a
fixed direction), which effectively limits the performance to
a specific range. Temporal stereo does not limit the perfor-
mance to a specific range as demonstrated in [11]. The same
sensor can be used in very small and very large environments,
and seamlessly transits between the two. On the other hand,
it does not provide scale and requires non-degenerate camera
movement. An additional benefit of combining temporal and
static stereo is, that multiple baseline directions are available:
while static stereo typically has a horizontal baseline – which
does not allow for estimating depth along horizontal edges,
temporal stereo allows for completing the depth map by
providing other motion directions.

In detail, we make the following key contributions:
• We generalize LSD-SLAM to stereo cameras, combin-

ing temporal and static stereo in a direct, real-time
capable SLAM method.

• We explicitly model illumination changes during direct
image alignment, thereby making the method highly
robust even in challenging real-world conditions.

• We perform a systematic evaluation on two benchmark
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Fig. 2. Overview on the Stereo LSD-SLAM system.

datasets from realistic robotics applications, demonstrat-
ing the state-of-the-art performance of our approach.

A. Notation

We use bold capital letters for matrices (such as R) and
bold lower case letter for vectors (such as ξ). The operator
[·]n selects the n-th row of a matrix. Throughout the paper
we use d to denote the inverse of the depth z of a point, i.e.,
d = z−1.

In Stereo LSD-SLAM, a map is maintained as a set of
keyframes Ki =

{
I li , I

r
i , Di, Vi

}
. Each keyframe consists of

the left and right image I l/ri : Ω → R of the stereo camera,
an inverse depth map Di : ΩDi

→ R+ and its variance map
Vi : ΩDi → R+. Depth and variance are only maintained
for one of the images in the stereo pair, we always use the
left image as reference frame. We assume the image domain
Ω ⊂ R2 to be given in stereo-rectified image coordinates,
i.e., the intrinsic and extrinsic camera parameters are known
a-priori. The domain ΩDi

⊂ Ω is the semi-dense restriction
to the pixels which are selected for depth estimation.

We denote pixel coordinates by u = (ux uy 1)
T . A 3D

position p = (px py pz 1)
T is projected into the image plane

through the mapping u = π(p) := K ((px/pz) (py/pz) 1)
T ,

where K is the camera matrix. The mapping p =

π−1(u, d) :=
((
d−1K−1u

)T
1
)T

inverts the projection
with the inverse depth d.

B. Depth Estimation

We estimate the geometry of the scene in keyframes. Each
keyframe maintains Gaussian probability distributions on the
inverse depth of a subset of pixels. This subset is chosen
as the pixels with high image gradient magnitude, since
these pixels provide rich structural information and more
robust disparity estimates than pixels in textureless areas.
Figure 3 shows an example of such a semi-dense depth
map and associated variance map. We initialize the depth
map by propagating depth hypothesis from the previous
keyframe. The depth map is subsequently updated with new
observations in a pixel-wise depth-filtering framework. We
also regularize the depth maps spatially and remove outliers.

In contrast to monocular SLAM, depth is estimated both
from static stereo (i.e., using images from different physical

cameras, but taken at the same point in time) as well as from
temporal stereo (i.e., using images from the same physical
camera, taken at different points in time).

a) Static Stereo: We determine the static stereo dispar-
ity at a pixel by a correspondence search along its epipolar
line in the other stereo image. In our case of stereo-rectified
images, this search can be performed very efficiently along
horizontal lines.

As correspondence measure we use the SSD photometric
error over five pixels along the scanline. After subpixel
accurate refinement of the disparity, its variance is estimated
through the geometric and photometric error identified in
[16]. If a Gaussian prior with mean d and standard de-
viation σd on the inverse depth is available, we constrain
the search to [d− 2σd, d+ 2σd]. In practice, the search
interval consists of only very few pixels for all but newly
initialized hypothesis, greatly accelerating the search and
reducing the probability of finding an incorrect or ambiguous
match. According to the two error sources, we expect that
pixels with image gradients close to vertical, or with low
image gradient along the horizontal direction do not provide
accurate disparity estimates. Hence, we neglect these pixels
for static stereo.

When a new keyframe is initialized, we immediately
perform static stereo to update and prune the propagated
depth map. In particular, pruning removes pixels that be-
came occluded, and we fill in holes arising from forward-
warping the depth map. Subsequently, we also make use of
static stereo from tracked non-keyframes, and integrate the
obtained disparity information into the keyframe they were
tracked on: In a first step, the inverse depth hypothesis at a
pixel u in the keyframe is transformed into the new frame,

u′ = π
(
Tξπ

−1 (u, d)
)

(1)

d′ =
[
Tξπ

−1 (u, d)
]−1

3
(2)

σ2
d′ =

(
d

d′

)4

σ2
d, (3)

according to the pose estimate ξ. The propagated hypothesis
is used as prior for a stereo search, and the respective
observed depth d′obs and observation variance σ2

d′,obs is
determined. Finally, the observation is transformed back into



Fig. 4. Temporal vs. Static Stereo: Example of a scene where both temporal
stereo (epipolar lines are parallel to the lane-markings on the road) and
static stereo (epipolar lines are parallel to the horizontal bridge) alone fail
to capture all information present. Our combined approach fuses information
from both, and hence can reconstruct everything in the scene.

the keyframe using

dobs =
[
T−1
ξ (π−1 (u′, d′obs))

]−1

3
(4)

σ2
obs =

(
d′obs

dobs

)4

σ2
d′,obs, (5)

and fused into the depth map. Note that observations from
non-keyframes can only be generated for pixels with an
existing prior hypothesis – new hypothesis are only generated
during stereo on the keyframe, or from temporal stereo. This
process is schematically shown in Fig. 2.

b) Temporal Stereo: After tracking, we estimate dispar-
ity between the current frame and the reference keyframe and
fuse it in the keyframe. Again, we only use pixels for which
the expected inverse depth error is sufficiently small. We
determine this uncertainty from several criteria: the image
gradient should be sufficiently large, not be parallel to the
epipolar line and the pixel should not be close to the epipole.
We kindly refer to [16] for further details on this method.
While we use a simple 5-pixel SSD error, we correct for
affine lighting changes with the affine mapping found during
tracking, as will be described in Sec. III-C. Note that for
temporal stereo, the geometric error typically is higher than
for static stereo, as relative camera pose stems from direct
image alignment. This pose estimate often is less accurate
than the offline calibrated extrinsic calibration between the
stereo camera pair.

C. Direct Image Alignment with Affine Lighting Correction

We determine the camera motion between two images
using direct image alignment. We use this method to track
camera motion towards a reference keyframe. It is also used
for estimating relative pose constraints between keyframes
for pose graph optimization. Finally, we propose a robust
method to compensate for affine lighting changes.

1) Direct Image Alignment: The relative pose between
two images I l1 and I l2 is estimated by minimizing the
photometric residuals

rIu(ξ) := I l1 (u)− I l2 (π (p′)) (6)

where p′ := Tξπ
−1 (u, D1(u)) and ξ transforms from

image frame I l2 to I l1. We also determine the uncertainty σI
r,u

of this residual [11]. The optimization objective for tracking
a current frame towards a keyframe is

Etrack(ξ) :=
∑

u∈ΩD1

ρ

(
rIu(ξ)

σI
r,u

)
, (7)

where ρ is a robust weighting function; we choose ρ as the
Huber norm. Note that in contrast to [12], we only align I l1 to
I l2. While one could choose to add photometric constraints to
the new right image Ir2 , we observed that this can decrease
accuracy in practice: typically, the baseline from I l1 to Ir2
is much larger than to I l2, leading to more outliers from
occlusions and reflections.

Since fused depth is available in keyframes, we add
geometric residuals for keyframe-to-keyframe alignment,

rDu (ξ) := [p′]3 −D2 (π (p′)) (8)

providing additional information that is not available when
initially tracking new frames, since these not have associated
depth estimates yet. The combined objective is

Ekeyframes(ξ) :=
∑

u∈ΩD1

[
ρ

(
rIu(ξ)

σI
r,u

)
+ ρ

(
rDu (ξ)

σD
r,u

)]
(9)

Note that this formulation exploits the full depth information
available for both frames, including propagated and fused
observations from other stereo pairs (see Sec. III-B). This
is in contrast to an implicit quadrifocal approach as e.g. in
[12].

We minimize these objectives using the iteratively
re-weighted Levenberg-Marquardt algorithm in a left-
compositional formulation: Starting with an initial estimate
ξ(0), in each iteration a left-multiplied increment δξ(n) is
computed by solving for the minimum of a second-order
approximation of E, with fixed weights:

δξ(n) = −(JTWJ + λdiag(JTWJ))−1JTWr (10)

where

J =
∂r(ε ◦ ξ(n))

∂ε

∣∣∣∣
ε=0

(11)

is the derivative of the stacked vector of residuals r(ξ)
with respect to a left-multiplied increment ε, JTWJ the
Gauss-Newton approximation of the Hessian of E, and W
a diagonal matrix containing the weights. The new estimate
is then obtained by multiplication with the computed update

ξ(n+1) = δξ(n) ◦ ξ(n). (12)

We use a coarse-to-fine scheme to improve efficiency and
basin of convergence of the optimization.

Assuming the residuals to be statistically independent, the
inverse of the Hessian from the last iteration (JTWJ)−1

is an estimate for the covariance Σξ of a left-multiplied
increment ε onto the final minimum, that is

ξ(n) = ε ◦ ξtrue with ε ∼ N (0,Σξ). (13)

In practice, the residuals are highly correlated, such that Σξ
is only a lower bound - yet it contains valuable information
about the correlation between noise on the different degrees
of freedom.



I1(u)

I2(u′)

I1(u)

I2(u′)

Fig. 5. Affine Lighting Correction: Two scenes with strong lighting
changes. On the right, we show a the scatter-plot of all residuals after direct
image alignment; The green line shows the best fit from our approach, while
the red line shows the best fit for all pixel. Note how it is heavily affected
by outliers caused by occlusions and over-exposed pixels, which are easily
recognizable in the scatter-plot.

2) Affine Lighting Correction: Direct image alignment is
fundamentally based on the brightness constancy assumption,
which is heavily violated e.g. when the cameras exposure
time is adjusted to better fit the average brightness of the
scene. A well-known countermeasure is to use a cost function
that is invariant to affine lighting changes, e.g. using the
normalized cross correlation (NCC) instead of a simple sum
of squared differences (SSD) for matching. Here, we propose
a similar approach, and modify the photometric residuals (6)
to be invariant to affine lighting changes:

rIu(ξ) := aI l1(u) + b− I l2(p′). (14)

Instead of a joint optimization for a, b and ξ in a common er-
ror formulation, we alternate between (1) a single Levenberg-
Marquardt update step in ξ (fixing a, b) and (2) a full
minimization over a, b (fixing ξ), using different weighting
schemes. This is motivated by the observation that ξ and a, b
react very differently to outliers:

• The minimum in a, b is heavily affected by occluded and
over-exposed pixels, as these tend to ”pull” in the same
wrong direction. On the other hand, it typically is well-
constrained already by only a small number of inlier-
residuals – we therefore employ a simple, aggressive
cut-off SSD error, i.e. ρa,b(r) := min{δmax, r

2}. Fig. 5
shows two example scenes, and the resulting affine
mapping with and without outlier rejection.

• The minimum in ξ is much less affected by outliers,
as they tend to ”pull” in different directions, cancelling
each other out. In turn, it may happen that some dimen-
sions of ξ are only constrained by a small amount of
pixels, which initially have a high residual – removing
these as outliers will cause the estimate to converge
to a wrong local minimum. We therefore employ the
weighting scheme proposed in [11], which only down-
weights but does not remove residuals.

Level Num Time

46× 30 10.5k 0.6 ms
92× 60 6.1k 2 ms
184× 120 4.6k 8 ms
368× 240 4.1k 24 ms

Fig. 6. Resulting pose-graph for Sequence 00 from the Kitti benchmark,
containing 1227 keyframes and 3719 constraints. The table shows how many
constraints have been attempted to track down to which pyramid level,
as well as the average time required for reciprocal image alignment on
that pyramid level. Note how most incorrect loop-closures candidates are
discarded at very coarse resolution already, which is very fast. Over the
whole sequence, only 43 large loop-closure attempts were required, to find
all loop-closures in the sequence.

Minimization in a, b is done by iteratively minimizing

Ea,b(a, b) :=
∑

u∈ΩD1

ρa,b
((
aI l1(u) + b

)
− I l2(u′)

)
(15)

with u′ := π (p′), which can be done in closed-form:

a∗ =

∑
u∈ΩL

I l1(u)I l2(u′)∑
u∈ΩL

I l2(u′)I l2(u′)
(16)

b∗ =
1

|ΩL|
∑
i

(
I l1(u′)− a∗I l2(u)

)
, (17)

with the set of inliers

ΩL :=
{
u ∈ ΩD1

| ρa,b
((
aI l1(u) + b

)
− I l2(u′)

)
< δmax

}
.

The found affine parameters a, b are then used during tem-
poral stereo and during the consistency check on depth
propagation.

D. Key-Frame-Based SLAM

Once a keyframe Ki is finalized – that is, after it is
replaced as tracking reference and will not receive any further
depth updates – it is added to the pose-graph, which is
continuously optimized in the background. Constraints are
obtained by performing SE(3) alignment with depth residual
and affine lighting correction to a set of possible loop-
closure candidates: Tracking is attempted on all keyframes
Kj1 , ...,Kjn , which
• are at a physical distance of less than (60 + p · 0.05) m.
• have a difference in viewing direction of less than (35+
p · 0.01)◦.

where p is the length of the shortest connecting path in
the keyframe graph between the two keyframes in meters,
which serves as a conservative approximation to the accu-
mulated relative pose error. For very large maps, additional
loop-closures can be found by exploiting appearance-based
image-retrieval techniques like FAB-MAP [17]. However in
our experiments we did not find this to be necessary. For
keyframes with p ≤ 100 m, we use the relative pose obtained
by composing edges along this path as initialization for direct
image alignment, otherwise the identity is used.



TABLE I
RESULTS ON KITTI BENCHARK

SLAM VO
Seq. trel rrel tabs time trel rrel time

00 0.63 0.26 1.0 82 1.09 0.42 21
01 2.36 0.36 9.0 37 2.13 0.37 24
02 0.79 0.23 2.6 64 1.09 0.37 28
03 1.01 0.28 1.2 72 1.16 0.32 27
04 0.38 0.31 0.2 51 0.42 0.34 28
05 0.64 0.18 1.5 77 0.90 0.34 29
06 0.71 0.18 1.3 72 1.28 0.43 29
07 0.56 0.29 0.5 74 1.25 0.79 31
08 1.11 0.31 3.9 73 1.24 0.38 29
09 1.14 0.25 5.6 61 1.22 0.28 30
10 0.72 0.33 1.5 70 0.75 0.34 21

mean 00-10 0.91 0.27 2.6 67 1.14 0.40 29
mean 11-21 1.21 0.35 – 69 1.40 0.36 28

· trel: translational RMSE drift (%), av. over 100 m to 800 m intervals.
· rrel: rotational RMSE drift (deg per 100 m), av. over 100 m to 800 m intervals.
· tabs: absolute RMSE after 6DoF alignment, in meters.
· time: single-threaded computation time per frame, in milliseconds.

For each candidate Kjk we independently compute ξjki
and ξijk by minimizing (9). Only if the two estimates are
statistically similar, i.e., if

e(ξjki, ξijk) := (ξjki ◦ ξijk)TΣ−1(ξjki ◦ ξijk) (18)

with Σ := Σjki + AdjjkiΣijkAdjTjki (19)

is sufficiently small, they are added as constraints to the
pose-graph. Here, Adjjki is the adjoint of ξjki in SE(3). To
speed up the removal of incorrect loop-closure candidates,
we apply this consistency check after each pyramid level.
Only if it passes, direct image alignment is continued on the
next higher resolution. This allows to discard most incorrect
candidates with only very little wasted computational re-
sources: Figure 6 shows how many constraints where tracked
on which pyramid level for one of the longest sequences in
the Kitti dataset.

IV. RESULTS

We present the results obtained by Stereo LSD-SLAM (1)
on the well-known Kitti dataset, and (2) on three sequences
recorded from a micro aerial vehicle (MAV) flying indoors,
taken from the EuRoC Challenge 3. We evaluate both
the runtime and accuracy, for different parameter settings.
Although our implementation makes heavy use of multiple
CPU cores, all timings given in this chapter refer to single-
threaded execution on an Intel i7-4900MQ CPU running at
2.8 Ghz.

A. EuRoC Dataset

We run Stereo LSD-SLAM on the EuRoC dataset, taken
from a MAV flying around a room which is equipped with
a motion capture system for ground truth acquisition. The
dataset contains 3 trajectories, with increasingly aggressive
motion. Fig. 7 shows the reconstruction obtained. The abso-
lute translational RMSE is 6.6 cm, 7.4 cm and 8.9 cm for the
first, second and third trajectory respectively. In this dataset
we removed the first and last 150 images for each trajectory,
as in some of them only the ground surface is visible.

Fig. 7. EuRoC Datasets from a micro aerial vehicle. Top: reconstruction
from the first (left) and third (right) trajectory. Bottom: Selection of images
from the third trajectory, displaying strong lightning changes (first to second
image), motion blur (third image) and views with little texture (fourth
image).

B. Kitti Dataset

We evaluated our method on the well-known Kitti dataset.
Table I summarizes the results both for Stereo LSD-SLAM
with, and without loop-closures (VO). The results given
are for half resolution, as we feel this is a better trade-
off between accuracy and computational speed – see also
Sec. IV-D. On the evaluation sequences 11-21, we achieve
a mean translational RMSE of 1.21% for full SLAM, which
currently ranks second amongst stereo methods. Stereo LSD-
SLAM is however much faster than methods achieving
similar accuracy. The increased error compared to the test
sequences 00-10 is due to the presence of many moving
objects in 20 and 21, which cause direct image alignment to
occasionally fail (Sec. IV-F). Furthermore, the Kitti bench-
mark only provides images captured at 10 Hz while driving
at speeds of up to 80 km/h – which is challenging for direct
methods, as these are good at exploiting small intra-frame
motions.

C. Visual Odometry vs. SLAM

Here, we evaluate the capability to perform large-scale
loop-closures when running the full SLAM system, as well
as the effect of only performing loop-closures in a small
window of the last l frames – effectively turning Stereo
LSD-SLAM into a Visual Odometry. For l = 0, no image
alignment with geometric error is performed, and only the
pose from the initial frame alignment is used. For this
comparison, we only consider Kitti sequences which contain
significant loop-closures, i.e. 00, 02, 05, 06 and 07. Figure 8
summarizes the result: It can clearly be seen that performing
full SLAM greatly decreases long-term drift, which is little
surprising. However, this comes at increased computational
cost: when performing full SLAM, the overall computational
budget required more than doubles (also see Tab. I), as the
full pose-graph has to be optimized and many loop-closure
constraints have to be tracked. All numbers in this Section
refer to running Stereo LSD-SLAM at half resolution.
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hence the translational drift decreases when evaluating over longer segments
(down to 0.5%). Right: 6DoF-aligned trajectories of the Kitti 00 sequence.
While performing local pose-graph optimization slightly increases the local
accuracy, it cannot remove drift over long segments.
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Fig. 9. Image Resolutions: The plot shows the mean translational RMSE
trel for different image resolutions, as well as the required computation time.
Stereo LSD-SLAM allows to smoothly trade-off one for the other – for an
image resolution of one eight of the original, it runs at 400 Hz (VO) / 145 Hz
(SLAM) in a single thread, still achieving a mean drift of only 3.5% (VO)
and 2.5% (SLAM).

D. Effect of Image Resolution

A beautiful property of Stereo LSD-SLAM is that the
achieved accuracy degrades very gracefully with decreasing
image resolution, while the computational budget required
shrinks rapidly. In fact, we were able to run both full SLAM
as well as VO on the Kitti dataset at down to one eight of
the original resolution, i.e., 154×46 pixels, and still achieve
a reasonable mean translational drift of 2.5% (SLAM) and
3.5% (VO) – at greatly reduced computational cost, running
in 15× real-time (SLAM) and 40× real-time (VO). The
result is summarized in Fig. 9.

E. Performance analysis

In Table II, we summarize the computational time required
for each part of the algorithm. All timings are given in mil-
liseconds per frame. For lower resolutions, images are down-
sampled in a pre-processing step, as this typically can be
done at no additional cost in hardware (pixel binning). It can
clearly be observed that all parts of the algorithm – except for
pose-graph optimization – directly scale with the number of
pixels in the image. Only at very low resolution, resolution-
independent operations – like inverting the Hessian during
LM minimization – start to have a visual impact.

F. Moving Objects & Occlusions

A remarkable property of direct image alignment ap-
proaches is the ”locking property” [18]: In the presence

TABLE II
COMPUTATIONAL TIME REQUIRED

154×46 310×92 620×184 1240×368

Tracking 1.2 ms 4.2 ms 16.0 ms 61.0 ms
Mapping 0.8 ms 2.9 ms 13.1 ms 62.8 ms
Constr. Search 3.7 ms 10.5 ms 40.0 ms 143.1 ms
Pose-Graph Opt. 1.2 ms 1.3 ms 1.4 ms 1.3 ms

Total (SLAM) 6.9 ms 18.9 ms 70.5 ms 268.2 ms

Fig. 10. Examples for scenes with moving objects & strong occlusions. On
the right, we show the intensity residual after direct image alignment (small
values are shown in gray; large negative / positive residuals are shown in
black / white). While in the first two examples direct image alignment locks
onto the correct motion, in the last one, it latches onto the wrong motion in
the scene – the moving cars – and fails to align the two images correctly.
This can be seen by the residual around the lane marking.

of multiple motions or outliers, the coarse-to-fine approach
causes direct methods to lock onto the most dominant motion
within the validity radius of the linearisation. A robust
weighting function then allows to minimize the effect of
pixels not belonging to this motion. Figure 10 shows three
examples in which large parts of the image are moving or
become occluded: In the first two examples the dominant
motion is correctly identified, whereas in the third example
image alignment locks onto the moving cars in the fore-
ground. We observed this problem only in Sequence 20 of
the Kitti benchmark as there are many cars moving at the
same speed – arguably making the dominant motion in the
scene that of the cars. For the on-line evaluation, we resolve
this by removing all points in a certain volume in front of the
car for this sequence only. Nevertheless, future work could
take advantage of our approach, for example by segmenting
the scene motion into a number of rigid-body motions ([18],
[19], [20]).

G. Qualitative Results

We show in Fig. 11 some qualitative results of the esti-
mated semi-dense depth maps, and the resulting point-clouds.
Note how depth is estimated in almost all areas that have
gradient information, and how many fine details (signs, lamp
posts) are recovered. Also, the inclusion of temporal stereo
allows to estimate depth for strictly horizontal structures, like
the power transmission lines visible in some of the images.



Fig. 11. Point clouds and depth maps for the Kitti dataset (sequences 08,14,15,18), running at full resolution. Also see the attached video.

V. CONCLUSIONS

We proposed Stereo LSD-SLAM, a novel direct approach
to SLAM with stereo cameras. Our method leverages static,
fixed-baseline stereo as well as temporal, variable-baseline
stereo cues. Static stereo provides accurate depth within
the effective operating range of the stereo camera. It also
removes scale ambiguities and difficulties with degenerate
motion along the line of sight, a problem inherent to monoc-
ular SLAM that only uses temporal stereo. With temporal
stereo on the other hand, depth can be estimated in variable
baseline directions that correspond to the translational motion
between frames.

Our method directly aligns images using photometric and
geometric residuals at a semi-dense set of pixels. We choose
pixels where there is sufficient information for static or tem-
poral stereo estimation. In contrast to sparse interest-point-
based methods, our approach is not restricted to a specific
type of image features that are extracted in a decoupled
processing stage prior to image alignment.

In our experiments, Stereo LSD-SLAM demonstrates
state-of-the-art results on the popular Kitti benchmark dataset
for stereo odometry and SLAM on autonomous cars. Stereo
LSD-SLAM also performs very accurate on challenging
sequences recorded with a micro aerial vehicle (MAV) for
the EuRoC Challenge 3. Both datasets are very challenging
for a purely monocular SLAM approach, since motion is
mainly along the line of sight (cars), or can mainly consist
of rotations (MAVs).

In future work, we consider extending our approach
to multi-camera setups beyond binocular stereo cameras.
Sensor fusion with inertial or GPS information could further
enhance accuracy and robustness on the local and the
global scale. Finally, we plan to address multi-body motion
segmentation and estimation. This way, our method would
not only recover the dominant motion in the images, but
also the motion of further independent moving objects.
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