
SegMatch: Segment based loop-closure for 3D point clouds

Renaud Dubé Daniel Dugas Elena Stumm Juan Nieto Roland Siegwart Cesar Cadena1

Abstract— Loop-closure detection on 3D data is a challenging
task that has been commonly approached by adapting image-
based solutions. Methods based on local features suffer from
ambiguity and from robustness to environment changes while
methods based on global features are viewpoint dependent. We
propose SegMatch, a reliable loop-closure detection algorithm
based on the matching of 3D segments. Segments provide
a good compromise between local and global descriptions,
incorporating their strengths while reducing their individual
drawbacks.

SegMatch does not rely on assumptions of ‘perfect segmen-
tation’, or on the existence of ‘objects’ in the environment,
which allows for reliable execution on large scale, unstructured
environments. We quantitatively demonstrate that SegMatch
can achieve accurate localization at a frequency of 1Hz on
the largest sequence of the KITTI odometry dataset. We
furthermore show how this algorithm can reliably detect and
close loops in real-time, during online operation. In addition, the
source code for the SegMatch algorithm will be made available
after publication.

I. INTRODUCTION

Loop-closure detection represents one of the key chal-
lenges of accurate Simultaneous Localization and Mapping
(SLAM). As drift is inevitable when performing state esti-
mation without global positioning information, reliable loop-
closure detection is a crucial capability for many robotic
platforms [1]. Many successful strategies for detecting loop-
closures using images are proposed in the literature. How-
ever, image-based loop-closure can become unreliable when
strong changes in illumination occur, and in the presence
of strong viewpoint variations [2]. Lidar-based localization,
on the other hand, does not suffer from changes in external
illumination, and since it captures geometry in a very fine
resolution, does not suffer as much as vision when changes
in viewpoint are present. This paper therefore considers
3D laser range-finders for their potential to provide robust
localization in outdoor environments.

Current strategies for detecting loop-closures in 3D laser
data are primarily based on keypoint detection and matching
[3]. In the context of performing place recognition on images,
Lowry et al. [2] state that using descriptors at the level of
segments or objects could provide the benefits of both local
and global features approaches. Object or segment maps also
offer several advantages over their metric and topological
counterparts. Among others, these maps better represent
situations where static objects can become dynamic, and

1Authors are with the Autonomous Systems Lab, ETH, Zurich
authors@mavt.ethz.ch.

This work was supported by the European Union’s Seventh Framework
Programme for research, technological development and demonstration
under the TRADR project No. FP7-ICT-609763.

Fig. 1: An illustration of the presented loop-closure framework. The
reference point cloud is shown below (in white), and the local point cloud
is aligned above. Colours are used to show the point cloud segmentation,
and segment matches are indicated with green lines.

are more closely related to the way humans perceive the
environment [1].

While working at the level of objects would be ideal, it
also has a two fold assumption. First, that we have access to a
perfect object segmentation technique, and second, that there
are actual ‘objects’ in the environment, under the definition
of [4]. These assumptions do not hold in general because
of imperfect segmentation and because of common real-
world scenarios with no distinguishable objects. This work
therefore introduces SegMatch, a segment-based approach
which takes advantages of more descriptive shapes than
keypoint-based features without the aforementioned strong
assumptions of object-based approaches. In other words, we
close loops by matching segments that belong to partial or
full objects, or to parts of larger structures (windows, arcs,
façades). Examples of such segments can be seen in Fig. 1
for data collected in an urban scenario.

Our system presents a modular design. It first extracts and
describes segments from a 3D point cloud, matches them to
segments from already visited places and uses a geometric-
verification step to propose loop-closures candidates. One
advantage of this segment-based technique is its ability to
considerably compress the point cloud into a set of distinct
and discriminative elements for loop-closure detection. We
show that this not only reduces the time needed for matching,
but also decreases the likelihood of obtaining false matches.

When it comes to segment description, although numer-
ous 3D point cloud descriptors exist [5–7], there is no
clear evidence of relative performance among them, such
as power of generalization or robustness against symmetry
in geometry for instances. Therefore, we have opted for a
machine learning approach to match a variety of standard
descriptors computed over the segments. Nonetheless, due

ar
X

iv
:1

60
9.

07
72

0v
1

 [
cs

.R
O

]
 2

5
Se

p
20

16

to the modular nature of the presented framework, future
advances in 3D segmentation, recognition, and description
can be used by replacing the respective components in our
pipeline.

To the best of our knowledge, this is the first paper to
present a real-time algorithm for performing loop-closure
detection and localization in 3D laser data on the basis of
segments. More specifically, this paper presents the following
contributions:

• SegMatch, a segment based algorithm to perform place
recognition with 3D point clouds.

• An open source implementation of SegMatch for online,
real-time loop-closure detection.

• A thorough evaluation of the algorithm performances
for detecting loop-closures in real-world applications.

The paper is structured as follows: Section II provides
an overview of the related work in the field of loop-closure
detection for 3D point clouds. The proposed algorithm is
then described in Section III and its online use is presented
in Section IV. The full system is evaluated in Section V, and
Section VI finally concludes with a short discussion.

II. RELATED WORK

Detecting loop-closures from 3D data is still an open
problem in robot localization. The problem has been tackled
with different approaches. We have identified three main
trends: (i) approaches based on local features, (ii) global
descriptors and (iii) based on planes or objects.

The works presented in [3, 8–11] propose to extract local
features from keypoints and perform matches on the basis of
these features. Bosse and Zlot [3] extract keypoints directly
from the point clouds and describe them with a 3D Gestalt
descriptor. Keypoints then vote for their nearest neighbours
in a vote matrix which is finally thresholded for recognizing
places. Similar approach has been used in [11]. Apart from
such Gestalt descriptors, a number of alternative local feature
descriptors exist which can be used in similar frameworks.
This includes features such as fast point feature histogram
(FPFH) [7] which will also be employed later in this work.
Alternatively, Zhuang et al. [8] transform the local scans
into bearing-angle images and extract Speeded Up Robust
Features (SURFs) from these images. A strategy based on
3D spatial information is employed to order the scenes before
matching the descriptors. A similar technique by Steder et al.
[9] first transforms the local scans into a range image. Local
features are extracted and compared to the ones stored in
a database, employing the Euclidean distance for matching
keypoints. This work is extended in [10] by using Normal-
Aligned Radial Features (NARF) descriptors and a bag of
words approach for matching. Zhang and Singh [12] are able
to estimate odometry in real-time using range data. Loop-
closures are mentioned but rely on an offline algorithm.

Using global descriptors of the local point cloud for loop-
closures is also proposed [13–15]. Rohling et al. [13] propose
to describe each local point cloud with a 1D histogram of
point heights, assuming that the sensor keeps a constant

height above the ground. The histograms are then com-
pared using the Wasserstein metric for recognizing places.
Granström et al. [14] describe point clouds with rotation
invariant features such as volume, nominal range, and range
histogram. Distances are computed for scalar features and
cross-correlation for histogram features, and an AdaBoost
classifier is trained to match places. Finally, ICP is used
for computing the relative pose between point clouds. In
another approach, Magnusson et al. [15] split the cloud into
overlapping grids and compute shape properties (spherical,
linear, and several type of planar) of each cell and combine
them into a matrix of surface shape histograms. Similar to
other works, these descriptors are compared for finding loop-
closures.

While local keypoint features often lack descriptive power,
global descriptors can struggle with invariance. Therefore
other works have also proposed to use 3D segments or
objects for the place recognition task. Fernandez-Moral et al.
[16], for example, propose to perform place recognition
by detecting planes in 3D environments. The planes are
accumulated in a graph and an interpretation tree is used
to match sub-graphs. A final geometric consistency test is
conducted over the planes in the matched sub-graphs. The
work is extended in [17] to use the covariance of the plane
parameters instead of the number of points in planes for
matching. This strategy is only applied to small, indoor
environments and assumes a plane model for segments which
is no longer valid in unstructured environment. A some-
what analogous, seminal work on object-based loop-closure
detection in indoor environments using RGB-D cameras
is presented by Finman et al. [18]. Although presenting
interesting ideas, their work can only handle a small number
of well segmented objects in small scale environments.

We therefore aim for an approach which does not rely
on assumptions about the environment being composed of
simplistic geometric primitives such as planes, or a rich
library of objects. This allows for a more general, scalable
solution. Inspiration is taken from Douillard et al. [19] and
Nieto et al. [20] which proposed different SLAM techniques
based on segments. A strategy for aligning Velodyne scans
based on segments is proposed in [19] where the Symmetric
Shape Distance is used to compare and match segments as
defined in [21]. Analogously, [20] proposed an Extended
Kalman Filter solution which uses segments as landmarks,
rather than point features.

III. SegMatch ALGORITHM

In this section we describe our approach for place recog-
nition in 3D point clouds. The proposed system is depicted
in Fig. 2 and is composed of four different modules: point
cloud segmentation, feature extraction, segment matching,
and geometric verification. Modularity has been a driving
factor during the design phase. In the following, we propose
an example implementation for every module of the system.

Fig. 2: Block diagram of SegMatch, a modular loop detection algorithm. The target map can either be loaded from disk (for localization) or computed
online (for loop-closure).

A. Segmentation
The first building block of SegMatch segments point

clouds into distinct elements for matching. We first apply
a voxel grid to the input point cloud P , in order to filter-
out noise in voxels where there is not enough evidence for
occupancy. The filtered point cloud is then segmented into
a set of point clusters Ci using the "Cluster-All Method"
of [22]. This segmentation requires the ground plane to be
previously removed, which can be achieved by clustering
adjacent voxels based on vertical means and variances [22].
Once the ground plane is removed, Euclidean clustering is
used for growing segments. For each cluster Ci the centroid
ci is computed as the average of all its points.

B. Feature extraction
Once we have segmented the point-cloud, we extract

features for each segment. This feature extraction step is used
for compressing the raw data and builds object signatures
suitable for recognition and classification. As there is no
clear gold-standard descriptor for 3D data, we use several
different descriptors.

Given a cluster Ci, descriptors are computed resulting
in feature vector fi =

[
f1 f2 . . . fm

]
. Whereas this

feature vector could be extended to include a large quantity
of descriptors, two descriptors which produced interesting
results are here presented.

f1 Eigenvalue based: In this descriptor, the segment point
cloud’s eigenvalues are computed and combined in a fea-
ture vector of dimension 1x7. We compute the linearity,
planarity, scattering, omnivariance, anisotropy, eigenentropy
and change of curvature measures as proposed in [23].

f2 Ensemble of shape histograms: This feature of dimen-
sion 1x640 is made of 10 histograms which encode the
shape functions D2, D3 and A3 as described in [6]. The
D2 shape function is a histogram of the distances between
randomly selected point pairs while D3 encodes the area
between randomly selected point triplets. The A3 shape
function describes the angles between two lines which are
obtained from these triplets.

C. Segment matching
Using these features, we wish to identify matches between

segments from the source and target clouds. For this opera-

tion we opted for a learning approach, as it is often difficult
to select the appropriate distance metric and thresholds, espe-
cially when multiple feature types are involved. A classifier is
therefore used to make the final decision about whether two
segments represent the same object or object parts. In order
to maintain efficiency, we first retrieve candidate matches by
performing a kd-tree search in the feature space, which are
then fed to the classifier.

Specifically, we employ a random forest for its classifica-
tion and timing performances. The idea behind this classifier
is to construct a multitude of distinct decision trees and to
have them vote for the winning class. During the learning
phase, each tree is trained using a bootstrapped subset
of the training data set and a random subset of features.
Random forests offer classification performance similar to
the AdaBoost algorithm but are less sensitive to noise in the
output label (such as a mis-labeled candidates) since it does
not concentrate its efforts on misclassified candidates [24].
Random forests can also provide information regarding the
feature’s relative importance for the classification task.

For the random forest classifier to determine whether
clusters Ci and Cj represent the same object, we compute
the absolute difference between the eigenvalue based feature
vectors: ∆f = |fi − fj |. The feature vectors fi and fj are
also fed to the classifier for a total eigenvalue based feature
dimension of 1x21. For the ten histograms of the ensemble
of shape features, the histogram intersection is computed,
resulting in a feature of dimension 1x10. Given this set of
features, the random forest classifier assigns a classification
score w of being a match. A threshold on w is applied for
building the final list of candidate matches passed to the next
module.

D. Geometric verification

The candidate matches are fed to a geometric-verification
test using random sample consensus (RANSAC) [25]. Trans-
formations are evaluated using the segment centroids. A
geometrically-consistent cluster of segments is finally ac-
cepted based on a minimum number of segments in it,
resulting in a 6DOF transformation and a list of matching
segments.

IV. INCREMENTAL SEGMENTATION

The previous section showed our approach to match 3D
point clouds using segments. In order to perform loop-closure
detection, a target segment map needs to be built online. This
section briefly demonstrates how this can be accomplished.

For each incoming point cloud given in a global reference
frame, this module first extracts a local point cloud by
defining a cylindrical neighbourhood of radius R, centred
around the current robot location. Segmentation and feature
extraction are performed only once, and the generated source
segments are used for both matching and building the target
map. When adding source segments to the target map, the
following two special cases need to be addressed.

1) Incomplete segments: Applying a cylindrical filter to
a point cloud inevitably results in cut objects, which then
results in ‘incomplete segments’ that can interfere with com-
plete views in the target map. These ‘incomplete segments’
are therefore detected and discarded so that the map contains
as many ‘full segment views’ as possible. This can be
achieved by filtering the source cloud with a smaller radius
r = R − b, where b is the thickness of the outer zone.
Segments having points within this zone are very likely to
represent incomplete segments and can safely be removed.

2) Duplicate segments: Segments added to the target map
can be duplicates of older segments, i.e. resulting from
the same object part, but segmented at different times.
As odometry is locally accurate, these duplicates can be
efficiently detected by comparing the distances of the closest
segments centroids. As we prefer to keep the latest view of
a segment, and given that we can discard the incomplete
segments, we choose to remove the oldest of these duplicates.
Further work could include techniques for merging these
‘duplicate segments’.

In the event of a loop-closure, the robot trajectory is re-
estimated and the positions of the target segments refreshed,
knowing the origin of their segmentation relative to the
trajectory. In case of successful detection, segments of the
target map will correctly align and can safely be filtered
for removing duplicates as described above. Filtering is
performed from the newest to the oldest segment.

This incremental segmentation algorithm is evaluated in
V-E.

V. EXPERIMENTS

The proposed segment based algorithm, SegMatch, is
evaluated using the KITTI odometry dataset [26]. We first
illustrate how this dataset can be processed for generating
segment matching samples for training and testing the clas-
sifiers (Sections V-A and V-B). This leads to an analysis
of the performances of different classifiers’ parametrization
(Section V-C). The segment based localization strategies
are then compared to a keypoint approach as a baseline
(Section V-D). We then show how the segment based loop
detection framework can be used for online place recognition
applications and how it can successfully operate in different
environments (Sections V-E and V-F).

A. Dataset

The following three analyses are performed using se-
quences 00, 05 and 06 of the KITTI dataset. Sequence 06
lasts 1.2 km (114 seconds) and is only used for training the
classifiers. Sequence 00 lasts 3.7 km (470 seconds) and is
particularly interesting as it contains one large loop where
the vehicle revisits the same environment for a stretch of 500
meters. This section with multiple traversals will therefore
be used in the localization experiment. Sequence 05 lasts
2.2 km (287 seconds) and is used for presenting the online
operation of the framework.

As previously described, the input of our segment based
loop detection algorithm is a point cloud in a global reference
frame. For generating a global map in real-time from the
large quantity of measurements provided by a Velodyne
sensor, a uniform rate sub-sampling filter is first applied for
removing half of the scan’s points. These scans are added
to the global map every time the robot drove a minimum
distance of 1 meter. As the sensor configuration on-board
the car is known (e.g. height of the sensor), ground truth
extraction is performed by directly filtering the input scan
by minimum height. This simple assumption is efficient and
works very well for this driving dataset.

For extracting the source point cloud, the radius of the
cylindrical neighbourhood R is set to 60 meters. The voxel
grid leaf size is set to 0.1 meters, and a minimum of two
points within a voxel is required to consider it as occupied.
For segmentation, the maximum Euclidean distance between
two occupied voxels such that they are considered to belong
to the same cluster is set to 0.2 meters. We choose to consider
only segments which contain a minimum of 100 points and
a maximum of 15000 points.

B. Training and testing setup

The following procedure is performed for generating both
training and testing data. During the first section of a
given sequence, a target map is generated and processed
by extracting and describing segments. When the vehicle
revisits the same section of the environment, the ground truth
information is used for storing pairs of corresponding and
differing segments from the source and target clouds. For
each segment in the local cloud, we perform knn retrieval in
feature space and identify the 200 nearest neighbours in the
target map. These candidates are saved as true matches for
the corresponding segments and false matches for differing
segments. Using this procedure on sequence 06 of the KITTI
dataset, we generate 2000 true and 800000 false segment
matches. For training the random forests, we adopt a 1:50
ratio between the number of positive and negative samples
which results in a training set of 102000 samples.

C. Segment matching performance

The goal of this first experiment is to evaluate the
performances of three segment matching techniques. The
first strategy titled L2 applies a threshold on the Euclidean
distance between two segment’s features vectors. The second
strategy, RF_eigen, is based on a random forest which relies

TABLE I: Parameters of three segment matching strategies.

Parameter L2 rf_eigen rf_full+shapes

Number of neighbours 200
kNN Feature space Eigenvalue based

Hard threshold value 0.0024 N/A N/A
Number of trees N/A 25 25
Training drive N/A 20 20

Threshold on probability N/A 0.81 0.72
Minimum cluster size 4
RANSAC resolution 0.4 meter

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
r
u
e
P
o
s
it
iv
e
R
a
t
e

L2

RF eigen

RF eigen+shapes

Fig. 3: ROC curves for segment matching performance using a hard
threshold on the distance between segment features (L2) compared to using
random forests on two different feature sets (RF_eigen, RF_eigen+shapes).
The operating points of FPR = 0.2 are indicated.

only on the eigenvalue based features. The last strategy,
RF_eigen+shapes, uses the full set of features described in
Section III-B. The parameters used for each classifier are
summarized in Table I.

Fig. 3 shows the receiver operating characteristic (ROC)
curves of the three methods when testing from data extracted
from sequence 00. The random forest classifiers offer an im-
provement in performance when compared to their L2 norm
counterpart. Examples of corresponding segments correctly
identified by the RF_eigen+shapes are illustrated in Fig. 4.

In the experiments of the following section, we illustrate
how these classifiers perform during real-time localization.
We define a false positive rate (FPR) of 0.2 to be the oper-
ating point of all classifiers in order to limit false segment
matches and avoid false loop-closures. This parameter and
the other ones summarized in Table I are used for the
localization and loop-closure experiments of Sections V-D
and V-E.

D. Localization performance

This section evaluates the performance of the SegMatch
algorithm for localizing in a target segment map. The section
of interest in sequence 00 (as described in Section V-A)
is used for creating the target map, and localization is

0 10 20 30 40 50 60 70 80

Travelled distance (meters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
ab

il
it
y

keypoint

L2

RF eigen

RF eigen+shapes

Fig. 5: Probability of travelling a given distance before localizing in the
target segment map. Data is obtained from 90 localization runs for each
strategy on drive 00 of the KITTI dataset. Over these 90 runs, the keypoint
and L2 strategies respectively detected 292 and 14 false loop-closures while
RF_eigen and RF_eigen+shapes made no false detections.

performed when this section is revisited. The three segment
based strategies described in section V-C are compared to
a keypoint based loop detection technique.

1) Keypoint baseline: For the keypoint localization
method, normals are first computed for every point of the
filtered cloud using a radius of 0.3 meters. Keypoints are
selected in the target and source clouds using the Harris 3D
keypoint extractor of the PCL library [27]. These keypoints
are filtered to have a minimum distance of 0.5 meters
between each keypoint, to ensure that the same regions
are not described twice, which in turn reduces ambiguity
during the later geometrical verification step. Each keypoint
is described using the fast point feature histogram (FPFH)
with a radius of 0.4 meters [7]. The source keypoints are
matched to their 75 closest neighbours in the target cloud and
the geometric verification algorithm described in Section III-
D is used to filter this list of keypoint matches and to output
loop detections. Parameters were chosen in an attempt to get
the best performance we could find.

2) Results: In order to show the reproducibility of the
localization, we perform 90 runs for each strategy and
present the average results. The distance travelled between
each localization is recorded and evaluated in a similar
manner to [28]. Fig. 5 shows the probability of travelling
a given distance without successful localization in the target
map. Specifically, this metric is computed as follows.

P (x) =

Sum of distance travelled without
localization for greater or equal to x meters

Total distance travelled
(1)

Although RF_eigen+shapes is the most complex and
computationally demanding strategy (see Table II), it never
required more than 55 meters before successful localization,
as compared to 67 and 88 meters for L2 and RF_eigen
respectively. On the other hand, while L2 is the quickest
strategy, it also made 14 false loop-closures, which could
motivate further reduction of the operating point of 0.2 FPR.
For the two random forest based strategies, the vehicle can
successfully localize within 35 meters 95% of the time.

Fig. 4: Corresponding segments successfully detected by the SegMatch algorithm. The top and bottom rows illustrate segments from the target and the
source clouds respectively.

TABLE II: Timing of each of the localization modules (in ms).

Module L2 RF_eigen RF_eigen+shapes

Segmentation 428.80 ± 5.83 428.78 ± 6.28 435.56 ± 7.34
Description 1.37 ± 0.03 1.37 ± 0.03 103.84 ± 2.41
Matching 244.52 ± 9.76 289.75 ± 10.56 563.23 ± 11.96

Geometric verification 67.43 ± 2.77 76.00 ± 2.75 85.57 ± 3.16

Total 742.12 795.91 1188.20

Finally, all segment matching methods clearly outperform
the keypoint baseline which necessitated much more work to
deliver positive results. Based on keypoint matching, we were
not able to obtain an interesting number of true positives
without allowing for some false positives. That is, on average
over a one minute localization run, the baseline detected 5.23
true positive and 3.25 false positive localizations.

The computational requirements of this algorithm on an
Intel i7-4900MQ CPU @ 2.80GHz are depicted in Table II
Note that all operations including ensemble of shape feature
extraction, histogram intersection, and random forest classi-
fication could benefit of parallelization.

E. Loop-closure performance

We now show how our segment based loop detection
algorithm can be used online and how it can easily be
integrated with a pose-graph trajectory estimation system. In
this scenario, the target map is built online as described in
Section IV. The results of applying this strategy on sequence
05 of the KITTI dataset is illustrated in Fig. 6. For this
sequence, the global map is created using iterative closest
point (ICP) for adding constraints between Velodyne scans.
This introduces a drift over time, as expected in GPS-free
state estimation solutions.

On this sequence, our real-time algorithm very success-
fully detected 12 true positive and no false positive loop-
closures. Once loops are detected, they are fed in a pose-
graph optimization system similar to the one described in
[29]1. The result of this optimization is used to update the
target segment positions and remove duplicate segments from
the target map (as in Section IV).

F. Demonstration with more complex data

To conclude the experiment section, we briefly show that
the proposed segment based loop detection algorithm can

1This separate contribution is under evaluation and will be available at
https://github.com/ethz-asl/3d_laser_slam.

Fig. 7: An illustration of the loop-closures based on region growing seg-
mentation with smoothness constraints on data from the Clausiusstrasse in
Zurich. The reference point cloud is shown below, and the local point cloud
is aligned above. Colours are used to show the point cloud segmentation,
and segment matches are indicated with green lines. Note the parts of larger
structures (windows, arcs, façades).

be applied to other environments and sensor modalities by
simply replacing sub-modules of the pipeline. As an exam-
ple, in situations where the simple segmentation algorithm
described in Section III-B cannot be applied, this module can
be replaced by a different algorithm. Fig. 7 shows an example
of a correct loop detection by matching segments obtained
from segmenting the point cloud based on smoothness con-
straints [30]. Although these types of segments may appear to
be less meaningful for humans, they provide discriminative
features for the loop-closure algorithm, as illustrated by the
matches shown in Fig. 7.

VI. CONCLUSION

This paper presented SegMatch, an algorithm for detecting
loop-closures from 3D laser data based on the concept
of segment matching. Compared to a keypoint approach,
acting at the level of segments offers several advantages
without making any assumptions about perfect segmentation
or of the presence of ‘objects’ in the environment. Our
modular approach first extracts segments from a source point
cloud, which are then described and matched to previously
mapped target segments. A geometric-verification step is
finally applied to turn these candidate matches into loop-
closures.

This framework has been exhaustively evaluated on the
KITTI dataset. We first analysed the impact of using a
random forest classifier to learn an adequate feature distance

https://github.com/ethz-asl/3d_laser_slam

(a) (b)

Fig. 6: Illustration of loop-closure with SegMatch: (a) Shows loops detected in real time by the segment based strategy RF_eigen+shapes during sequence
05. The red dots represent locations where segmentation and loop-closure detection were performed and the blue lines indicate the detected loops (with
no false positives). (b) Illustrates the result of feeding these loops to an online pose-graph trajectory estimator.

metric for the purpose of matching segments. We have then
shown that the algorithm is able to accurately localize at
a frequency higher than 1Hz in the largest map of the
KITTI dataset. We also demonstrated how it is possible to
robustly detect loops in an online fashion, and how these
can be fed to a pose-graph trajectory estimator. Thanks to
the framework’s modular approach, we have furthermore
illustrated that it can easily be applied to different scenarios
by simply changing building blocks of the algorithm. Code
for the entire framework is available online, offering real-
time segmentation and loop-closure detection for streams of
3D point clouds.

Based on this segment matching technique, we foresee
several possible advantages in systems which do more than
mapping - using segments for both matching and describing
the environment. We will pursue supervised learning tech-
niques to interpret these segment-based maps into structural
and object semantic classes.

REFERENCES

[1] S. Thrun et al., “Robotic mapping: A survey,” Exploring
artificial intelligence in the new millennium, vol. 1, pp. 1–
35, 2002.

[2] S. Lowry, N. Sunderhauf, P. Newman, J. J. Leonard, D. Cox,
P. Corke, and M. J. Milford, “Visual place recognition: A
survey,” IEEE Trans. on Robotics, 2016.

[3] M. Bosse and R. Zlot, “Place recognition using keypoint
voting in large 3D lidar datasets,” in IEEE Int. Conf. on
Robotics and Automation, 2013.

[4] B. Alexe, T. Deselaers, and V. Ferrari, “What is an object?”
in IEEE Conf. on Computer Vision and Pattern Recognition,
2010.

[5] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift
descriptor and its application to action recognition,” in ACM
Int. Conf. on Multimedia, 2007.

[6] W. Wohlkinger and M. Vincze, “Ensemble of shape functions
for 3d object classification,” in IEEE Int. Conf. on Robotics
and Biomimetics, 2011.

[7] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature
histograms (fpfh) for 3d registration,” in IEEE Int. Conf. on
Robotics and Automation, 2009, pp. 3212–3217.

[8] Y. Zhuang, N. Jiang, H. Hu, and F. Yan, “3-d-laser-based

scene measurement and place recognition for mobile robots
in dynamic indoor environments,” IEEE Transactions on In-
strumentation and Measurement, vol. 62, no. 2, pp. 438–450,
2013.

[9] B. Steder, G. Grisetti, and W. Burgard, “Robust place recog-
nition for 3D range data based on point features,” in IEEE
Int. Conf. on Robotics and Automation, 2010.

[10] B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard, “Place
recognition in 3d scans using a combination of bag of words
and point feature based relative pose estimation,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2011.

[11] A. Gawel, T. Cieslewski, R. Dubé, M. Bosse, R. Siegwart,
and J. Nieto, “Structure-based Vision-Laser Matching,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Dae-
jeon, 2016.

[12] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping
in real-time,” in Robotics: Science and Systems, 2014.

[13] T. Rohling, J. Mack, and D. Schulz, “A fast histogram-
based similarity measure for detecting loop closures in 3-d
lidar data,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2015.

[14] K. Granström, T. B. Schön, J. I. Nieto, and F. T. Ramos,
“Learning to close loops from range data,” The Int. Journal
of Robotics Research, vol. 30, no. 14, pp. 1728–1754, 2011.

[15] M. Magnusson, H. Andreasson, A. Nüchter, and A. J. Lilien-
thal, “Automatic appearance-based loop detection from three-
dimensional laser data using the normal distributions trans-
form,” Journal of Field Robotics, vol. 26, no. 11-12, pp. 892–
914, 2009.

[16] E. Fernandez-Moral, W. Mayol-Cuevas, V. Arevalo, and
J. Gonzalez-Jimenez, “Fast place recognition with plane-based
maps,” in IEEE Int. Conf. on Robotics and Automation, 2013.

[17] E. Fernández-Moral, P. Rives, V. Arévalo, and J. González-
Jiménez, “Scene structure registration for localization and
mapping,” Robotics and Autonomous Systems, vol. 75, pp.
649–660, 2016.

[18] R. Finman, L. Paull, and J. J. Leonard, “Toward object-based
place recognition in dense rgb-d maps,” in ICRA workshop on
visual place recognition in changing environments, 2015.

[19] B. Douillard, A. Quadros, P. Morton, J. P. Underwood,
M. De Deuge, S. Hugosson, M. Hallström, and T. Bailey,
“Scan segments matching for pairwise 3d alignment,” in IEEE
Int. Conf. on Robotics and Automation, 2012.

[20] J. Nieto, T. Bailey, and E. Nebot, “Scan-slam: Combining ekf-
slam and scan correlation.” Springer, 2006, pp. 167–178.

[21] B. Douillard, J. Underwood, V. Vlaskine, A. Quadros, and

S. Singh, “A pipeline for the segmentation and classification
of 3d point clouds,” in Experimental Robotics. Springer,
2014, pp. 585–600.

[22] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine,
A. Quadros, P. Morton, and A. Frenkel, “On the segmentation
of 3d lidar point clouds,” in IEEE Int. Conf. on Robotics and
Automation, 2011.

[23] M. Weinmann, B. Jutzi, and C. Mallet, “Semantic 3d scene
interpretation: a framework combining optimal neighborhood
size selection with relevant features,” ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 2, no. 3, p. 181, 2014.

[24] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[25] M. A. Fischler and R. C. Bolles, “Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography,” Communications of the
ACM, vol. 24, no. 6, pp. 381–395, 1981.

[26] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for

autonomous driving? the kitti vision benchmark suite,” in
IEEE Conf. on Computer Vision and Pattern Recognition,
2012.

[27] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library
(PCL),” in IEEE Int. Conf. on Robotics and Automation, 2011.

[28] C. Linegar, W. Churchill, and P. Newman, “Work smart, not
hard: Recalling relevant experiences for vast-scale but time-
constrained localisation,” in IEEE Int. Conf. on Robotics and
Automation, 2015.

[29] R. Dubé, H. Sommer, A. Gawel, M. Bosse, and R. Siegwart,
“Non-uniform sampling strategies for continuous correction
based trajectory estimation,” in IEEE Int. Conf. on Robotics
and Automation, 2016.

[30] T. Rabbani, F. Van Den Heuvel, and G. Vosselmann, “Seg-
mentation of point clouds using smoothness constraint,” In-
ternational Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 36, no. 5, pp. 248–253,
2006.

	I INTRODUCTION
	II RELATED WORK
	III SegMatch Algorithm
	III-A Segmentation
	III-B Feature extraction
	III-C Segment matching
	III-D Geometric verification

	IV Incremental Segmentation
	IV-.1 Incomplete segments
	IV-.2 Duplicate segments

	V EXPERIMENTS
	V-A Dataset
	V-B Training and testing setup
	V-C Segment matching performance
	V-D Localization performance
	V-D.1 Keypoint baseline
	V-D.2 Results

	V-E Loop-closure performance
	V-F Demonstration with more complex data

	VI CONCLUSION

