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Abstract. Visual Odometry is one of the key technology for navigating
and perceiving the environment of an autonomous vehicle. Within the
last ten years, a common sense has been established on how to imple-
ment high precision and robust systems. This paper goes one step back
by avoiding temporal filtering and relying exclusively on pure measure-
ments that have been carefully selected. The focus here is on estimating
the ego-motion rather than a detailed reconstruction of the scene. Differ-
ent approaches for selecting proper 3D-flows (scene flows) are compared
and discussed. The ego-motion is computed by a standard P6P-approach
encapsulated in a RANSAC environment. Finally, a slim method is pro-
posed that is within the top ranks of the KITTI benchmark without
using any filtering method like bundle adjustment or Kalman filtering.

1 Introduction

For autonomously navigating platforms it is indispensable to use some kind of
odometry to travel along a planned path or to relocate itself in a known environ-
ment. One possibility is wheel odometry, which is the combination of measured
revolutions of a platforms wheel plus steering angle if available. This method suf-
fers from slip and also heavy drift in position which increases over time. Similar
problems occur with an IMU (Inertial Measurement Unit) that usually incor-
porates accelerometers, gyroscopes and sometimes GPS within a strap-down
algorithm. This requires an intensive and complex filtering to compensate errors
from GPS plus huge drifts from the accelerometers. In the end, such a system
can become very expensive and slow in terms of reaction time on sudden changes
in movement.

On the other side, visual odometry has become a serious alternative because
of decreasing camera costs and the fast developing market of small powerful
integrated low cost processors. Still, problems like drift over time remain. Nev-
ertheless, the accuracy is in a much lower range than wheel odometry (also
because the slip problem is avoided) and it opens the possibility for many other
applications that make use of cameras, like collision avoidance, lane keeping or
sign recognition. Also very powerful is the combination of visual odometry with
gyroscopes which can have very accurate rotation rates [15].

In this paper, the focus is on visual odometry with a stereo camera. This
is the easiest vision set-up to implement and the one that currently leads to
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the most accurate results. In contrast, a mono camera set-up is per se not able
to estimate the real 3D-translation (only up to scale) because of the missing
real world relation. To overcome this, a ground plane estimation with known
distance of the camera above ground could be used to compute the missing
scale. This brings in new errors of inaccurate or even false measures. The most
straightforward and accurate way is to get the scale factor from a calibrated
stereo set-up.

Further, the drift inherent to purely visual odometry system could be reduced
by applying VSLAM-techniques (Visual Simultaneous Localization and Map-
ping) which relocate the moving platform to previously visited places. The main
interest of this work is going back to the starting point of a VSLAM-system - the
pure visual odometry - and to take maximal advantage of the process to achieve
a high precision with a simple as possible approach.

2 Related Work

The term visual odometry appeared for the first time in the publication [14]. A
very comprehensive overview of state of the art visual odometry can be found in
[7,17]. The key message from their tutorial for a stereo system is to compute the
relative rotation and translation by minimizing the re-projection error on the
image plane (Perspective from n Points, PnP). In contrast, minimizing the error
of 3D-points is inaccurate because of increasing uncertainties with increasing
depth. Additionally, a filtering method like bundle adjustment should be applied
to reduce the drift over time.

Thanks to publicly available benchmarks like the well-known KITTI bench-
mark [8], visual odometry methods are now comparable in their precision. Nearly
all of the top ranked methods on the KITTI benchmark apply the minimization
of the re-projection error. The top ranked visual odometry submission [4] first
estimates the rotational motion and subsequently the translation. Features are
matched by a combination of SAD and NCC plus geometric constraints. They are
tracked over time and pixel positions are refined in a predictor-corrector manner.
Long life features are preferred against shortly tracked features. A similar app-
roach of tracking long life features has been used in [1]. Again, they refine tracked
features in a prediction-correction framework called “integrated features”. [16]
uses standard visual odometry processes like feature tracking and multi-window
bundle adjustment in a carefully built system motivated from monocular visual
odometry. A different approach is presented by [5] which performs a photometric
alignment based on depth maps. Depth is computed along the stereo baseline
(Static Stereo) and the movement baseline (Temporal Stereo). Correspondence
measures are tracked over time and search ranges are constrained from previ-
ous estimates. Camera positions are finally optimized in a pose-graph using key
frames and loop closures are done if the cameras are close to a previously visited
location.

Some work also analyzed the influence of features at different depth on the
pose estimation. For example [13] uses features at infinity distance (infinity
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according to the pixel raster of the image sensor) for rotation estimation and
close features for translation. [11] make use of the bucketing technique - known
from robust regression methods - to indirectly pick features at different depths
for a better pose estimation. For pose optimization, they use an Iterated Sigma
Point Kalman Filter (ISPKF).

In contrast to the previously mentioned publications, this work does not use
any temporal filtering, neither bundle adjustment nor any predictor-corrector
like filtering. The system is built in a way that as few as necessary process-
ing steps are used and poses are concatenated from pure measurements. This
reduces the implementation effort drastically as already a proper feature tracking
requires indexing and complex managing over time.

The advantage of the proposed system is its fast reaction time which is impor-
tant for applications like collision avoidance or for drastically changing move-
ments. Still, the approach is competing with the top ranked methods on the
KITTI benchmark and currently on rank 8 under the stereo vision methods (see
Chap. 6 for more details).

3 System Overview

Assuming that the stereo images are already rectified, the system consists of
two parts. First, the 3D-flow (scene flow) computation and second, the pose
estimation.

The scene flow computation is a combination of disparity and optical flow
computation using standard Harris corner detector [9] with subsequent pyrami-
dal Lucas & Kanade optical flow computation [2].

The pose estimation is a simple P6P-method (Perspective from 6 Points)
encapsulated in a RANSAC (Random Sample Consensus) framework.

The idea was to use available standard methods (e.g. from OpenCV) to first
extract the crucial points of visual odometry. In a later step - which is not part
of this paper - specializations of the core parts are planned.

In the remainder of this paper, the focus is on the comparison of different
constraints on the scene flow estimations in Sect. 4. The pose estimation - dis-
cussed in Sect. 5 - is not modified and runs with parameters that have been
determined in previous optimizations. Finally, experimental results are shown
on the KITTI benchmark data.

4 Scene Flow Estimation

The scene flow is always computed by two consecutive stereo image pairs {I li , Iri }
and {I li+1, I

r
i+1}. Initially, standard Harris corners are estimated by first com-

puting the partial image derivatives:

Q(x) =
∑

W

[
I2x IxIy

IxIy I2y

]
(1)
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and then extracting the corner response H(x, y) by:

H(x) = λ1λ2 − k(λ1 + λ2)2 (2)

where λ1 and λ2 are the eigenvalues of Q(x). W is the neighbourhood around
a pixel position x =(x,y)T . The parameter k influences the “cornerness” of a
feature. W is a 7× 7 window, with the size determined by optimization using an
extensive parameter grid search. 4000 features are initially computed and sorted
by their corner response value.

Additionally, the integer pixel position of the Harris feature is refined to sub-
pixel accuracy. That means, x is recalculated with the help of gradient informa-
tion in its neighbourhood [3].

After the feature extraction, the Lucas & Kanade optical flow is computed
for pairwise combinations of the input images {I li , Iri , I li+1, I

r
i+1}, where i, i + 1

denote subsequent images in time and l, r denote left and right images of the
stereo set-up. The Lucas & Kanade optical flow is the perfect counterpart to the
Harris corner, because its correlation measure results in the same partial image
derivatives multiplied by a vector containing the temporal derivatives:

(
u
v

)
=

∑

W

[
I2x IxIy

IxIy I2y

]−1 [−∑
W IxIt

−∑
W IyIt

]
(3)

where v = (u,v)T is the optical flow. As v is only valid in a local neighbour-
hood the pyramidal approach has been used to propagate optical flows from
down-sampled images to the highest resolution. 5 pyramid levels have been used
and for W a window of 9× 9 has been chosen, also determined from previous
parameter optimization.

Lucas & Kanade optical flows are very fast to compute but tend to get stuck
in local minima. Therefore, further checks are required to limit the measurements
to a reliable set. On the other hand, wrong checks can remove features that
might be important for the visual odometry. This sensitive issue is tackled more
in detail in the following by different experiments on the KITTI training data.

On the KITTI website an evaluation software and ground truth poses for 11
sequences are available [8]. For every sequence, the translation error and rotation
error is calculated. All following experiments refer to this error measure.

For scene flow estimation, the disparity between {I li+1, I
r
i+1} and the opti-

cal flow between {I li , I li+1} (see Fig. 1) are computed by the Lucas & Kanade
method. This is the minimal processing effort as the poses are optimized on the
re-projection error, i.e. 3D positions from {I li+1, I

r
i+1} and 2D correspondences

from {I li , I li+1} are sufficient (see Sect. 5).
The first consistency check is a forward/backward check. That means, if the

optical flow or disparity from the end point back to the starting point deviates
more than a threshold tfb, then the feature is rejected. Table 1 shows the trans-
lation errors and rotation errors for different tfb. As a threshold of tfb = 5 pixels
gives the best result, this value is used for further experiments. On the other
hand, switching the forward/backward check off leads to a significant drop of
the performance.
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Fig. 1. Computation of the disparity dli+1 and the optical flow vli for a Harris corner
feature initialized in Ili .

Table 1. Influence of backwards check on overall performance

tfb = 1 tfb = 2 tfb = 5 fb off

translation error [%] 1.3426 1.3314 1.3070 2.4815

rotation error [deg/m] 0.0063 0.0065 0.0062 0.0175

The second consistency check is on the disparity measure only. Since for dis-
parity measure a standard optical flow method is used, all vectors that have
a y-component greater than zero pixels are theoretically not possible because
a perfect rectification aligns both images in a way that the epipolar lines are
horizontal. In practice, rectifications are never perfect and hence a threshold
to remove disparities with a larger y-component than a threshold td is intro-
duced. Additionally, disparities that have a positive x-component are obviously
also invalid measurements, because disparities should only have negative signs
(measured from the left to the right image). Therefore, positive disparities are
also rejected. Based on Table 2, a threshold of td = 1 is chosen for future tests.

Table 2. Influence of check for y-disparity component on overall performance

td = 1 td = 2 td = 5

translation error [%] 1.3070 1.3424 1.3663

rotation error [deg/m] 0.0062 0.0066 0.0067

So far, tests were made with a Harris corner response factor k close to zero.
This means that as many features as possible are kept to leave the decision
of rejection on the subsequent checks. In the next experiment the k value is
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Table 3. Influence of k on overall performance

k = 0.0 k = 0.01 k = 0.02

translation error [%] 1.3070 1.3209 1.3532

rotation error [deg/m] 0.0060 0.0064 0.0064

increased to check the influence of the “cornerness” on the overall performance.
A value of k = 0.0 means that the features can also be edges and with increasing
k features more and more resemble corners.

From Table 3, it can be seen that a value of k = 0.0 gives the smallest
translation error. This shows that a high corner response is probably not the
best indicator for a good feature for visual odometry estimation with combined
optical flow and disparity. Definitely, a corner has sufficient structure to allow
an optical flow measure and avoid the aperture problem. On the other hand,
using stereo images and consecutive images allows for more meaningful outlier
rejection checks by using geometric constraints.

The last consistency check is a circle check to identify outlier. This circle check
computes the flows between left and right images in time as well as the disparities
between first and second image pairs (see Fig. 2). Only if all concatenated pixel
measurements end up at the same position in image Iri+1 with an error less than
a threshold tcc, the feature is kept.

Fig. 2. Circle check: only if all measurements end up at the same position in Iri+1 the
feature is kept.

As can be seen in Table 4, the circle check does not significantly improve
the performance compared to the previous version (1.3070 % against 1.3048 %).
Additionally, it requires double computation effort compared to the version
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Table 4. Influence of circle check on overall performance

tcc = 1.0 tcc = 2.0 tcc = 5.0

translation error [%] 1.3453 1.3124 1.3048

rotation error [deg/m] 0.0064 0.0064 0.0062

without circle check. Therefore, the previous version without circle check is used
as final method.

5 Pose Estimation

The pose estimation is a standard P6P-approach minimizing the re-projection
error on the image plane as follows:

arg min
Ti

∑

j

∥∥∥∥∥x̂l
i,j −

1
[0 0 1]TiX̂ l

i+1,j

TiX̂
l
i+1,j

∥∥∥∥∥

2

(4)

where Ti is the transformation matrix from time step i + 1 to time step i
containing rotation and translation:

Ti =

⎛

⎝
r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz

⎞

⎠

X̂ l
i+1,j is the homogeneous 3D-position in the second image estimated from

dli+1 and the values from rectification for focal length, principal point and base-
line. x̂l

i,j are the Harris corner positions converted to homogeneous coordinates
(cf. Fig. 1). Ti is computed from i + 1 to i to directly get the ego-motion of the
vehicle. Computing from i to i+1 would return the coordinate transformations,
which is obviously the inverse ego-motion.

After a first estimation of Ti using Singular Value Decomposition (SVD), R
and T are refined by non-linear optimization on the geometric error [12,17].

The computation of Ti is encapsulated in the robust regression framework
RANSAC [6,10]. The inlier/outlier-ratio has been set to a conservative value of
0.5 to avoid run-time optimizations at too early stage. The most crucial para-
meter is the re-projection error that defines the threshold for the census set tr.
The feature points are at such a high precision that the re-projection error can
be set below 1 pixel. Table 5 shows the influence of the re-projection threshold.
The overall performance drastically increases with decreasing tr. A threshold of
tr = 0.1 pixel finally lead to the best results on training and testing set.

6 Experimental Results

In the previous chapters different methods have been evaluated on the KITTI
benchmark training data. In this chapter, the results of the testing data are
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Table 5. Influence of the re-projection error threshold on overall performance

tr = 0.5 tr = 0.3 tr = 0.1

translation error [%] 1.8953 1.6104 1.3070

rotation error [deg/m] 0.0113 0.0090 0.0060

Fig. 3. Reconstructed path of sequence 13 and ground truth path from the KITTI
benchmark.

Fig. 4. Reconstructed path of sequence 13 (red dots) and 3D-reconstruction along the
driven path (gray dots). (Color figure online)
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presented. In summary, the algorithm computes 3D positions from {I li+1, I
r
i+1}

and 2D correspondences from {I li , I li+1} (no circle check). Additionally, a for-
ward/backward check is applied with tfb = 5 pixels, a disparity rejection if
td > 1 pixel and a Harris corner response factor of k = 0.0. The RANSAC
applies a re-projection threshold of tr = 0.1 pixel.

Uploading this version gives a translation error of 1.17 % and a rotation
error of 0.0035 [deg/m], which ranks 8th under the vision approaches (NOTF,
5th April 2016) and 11th in overall ranking (including laser approaches).

Figure 3 depicts ground truth poses and the computed poses by the NOTF
algorithm. Figure 4 depicts the same path but with the reconstructed features
that have been used for the ego-motion estimation.

At the moment, the run-time is comparably high (440 ms on a Core i5-4460, 1
core used at 3.2 GHz) which is due to the fact that the parameters are chosen very
conservatively; many more iterations than required for e.g. sub-pixel refinement
and random sampling of RANSAC. This has been a deliberate decision so as not
to optimize at an too early stage. In a next step, the parameters will be adapted
in a way that the performance remains comparable at a lower run-time, which
will be expected to be in a range of 100–150 ms on the same machine.

7 Conclusion

A simple and slim visual odometry method has been proposed that is within the
top ranks of the KITTI benchmark. In contrast to other methods, no temporal
filtering is applied. The results support the conclusion that with a proper outlier
rejection, raw and unfiltered optical flow measures can deliver the same precision
as current methods applying bundle adjustment or Kalman filtering.

The presented study tackled the problem of outlier rejection by purely vary-
ing geometric constraints on the optical flow measure. It has been shown that
such constraints have a high influence on the performance. Choosing the right
combination is a balancing act between keeping as many accurate features as
possible and rejecting imprecise measures.

The pose estimation has not been modified, which is a topic remaining for
future work. Probably, there will be a higher precision if the selection of measure-
ments in the RANSAC framework is done with more prior knowledge instead of
pure random sampling.

Still unclear is if there will be a performance boost by applying filtering
methods. This will also be an open question for future investigations.

Further improvement is expected if a real 1D disparity measure is applied for
3D features instead of standard optical flow with subsequent feature rejection.
Probably, a significant number of disparities gained by the optical flow procedure
are wrong measures, because a full search is applied.
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