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Abstract

We propose a formulation of monocular SLAM which
combines live dense reconstruction with shape priors-based
3D tracking and reconstruction. Current live dense SLAM
approaches are limited to the reconstruction of visible sur-
faces. Moreover, most of them are based on the minimi-
sation of a photo-consistency error, which usually makes
them sensitive to specularities. In the 3D pose recovery lit-
erature, problems caused by imperfect and ambiguous im-
age information have been dealt with by using prior shape
knowledge. At the same time, the success of depth sen-
sors has shown that combining joint image and depth infor-
mation drastically increases the robustness of the classical
monocular 3D tracking and 3D reconstruction approaches.

In this work we link dense SLAM to 3D object pose and
shape recovery. More specifically, we automatically aug-
ment our SLAM system with object specific identity, together
with 6D pose and additional shape degrees of freedom for
the object(s) of known class in the scene, combining im-
age data and depth information for the pose and shape re-
covery. This leads to a system that allows for full scaled
3D reconstruction with the known object(s) segmented from
the scene. The segmentation enhances the clarity, accuracy
and completeness of the maps built by the dense SLAM sys-
tem, while the dense 3D data aids the segmentation process,
yielding faster and more reliable convergence than when us-
ing 2D image data alone.

1. Introduction
The reconstruction of scene geometry from a single

monocular image sequence is a key problem in computer

vision. When the camera trajectory is unknown, the joint

on-line estimation problem for scene structure and camera

pose has become known as visual Simultaneous Localisa-

tion and Mapping. Early methods for visual SLAM [7, 11]

concentrated on accurate camera pose estimation using only

sparse reconstructions. These have various disadvantages,

such as their inability to provide occlusion information.

More recently, with the introduction of new GPU-based

computation devices, real-time, dense SLAM has become a

technical possibility [10, 15]. These dense approaches use

the raw image information (such as colour or gradients) to

estimate the scene geometry, leveraging weak priors such as

scene smoothness in the absence of image texture, and rely-

ing on colour constancy as the camera moves; this works for

lambertian scenes, but fails in the presence of specularities,

when artefacts tend to appear in the reconstruction.

Humans deal with these issues via the use of high level

semantic information. In an incremental move towards

such high-level representations, works such as [4] or [1]

use known objects as features in the SLAM system. While

this has the effect of increasing SLAM robustness and ac-

curacy, both approaches are limited by their use of a sparse

map and by the fact that they consider the objects to be of

fixed and perfectly known shape. A more generic semantic

reconstruction is proposed in [8], where shape and layout

priors of buildings are learned offline. Once several plans

of a building are found in several images, the model that

best matches the priors and images is estimated. While this

method allows for a semantic understanding of the scene

and an estimation of what is not visible, its formulation re-

stricts it to (mainly) planar scenes.

While shape priors have seen limited use in the SLAM

literature, they have been extensively used in segmentation

and tracking, as a solution to the problem of imperfect raw

image information. One of the most effective and popular

approaches to represent shape knowledge is to use dimen-

sionality reduction to capture the shape variance as low di-

mensional latent shape spaces. Initial works, such as [24],

focused on (implicitly or explicitly defined) 2D shapes, and

used linear dimensionality reduction in the form of princi-

pal component analysis (PCA). More recent works use non-

linear dimensionality reduction such as Kernel PCA in [6]

and Gaussian Process Latent Variable Models (GP-LVM)

in [17]. This led to 3D shape priors being first introduced

in [23]. Most recently, [19] learn GP-LVM latent spaces

of 3D shapes and use them in monocular simultaneous 2D

segmentation, 3D reconstruction and 3D pose recovery.

Our objective in this paper is to address these limitations

of existing systems by proposing an efficient dense SLAM
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approach that integrates a shape-prior-based estimator as-

and-when possible. Initially, photo-consistency is used to

built a dense representation of the scene as in [15], but once

an object of known type is detected (automatically, using

a standard 2D sliding-window object-class detector) the in-

put images and resulting depth map from the SLAM are

used in a novel energy function minimisation to find the 6D

pose and shape of the object. Here, in a manner similar to

[19], we represent the shape-prior using GP-LVM and opti-

mise an energy over the pose and a low-dimensional latent

shape space. An implicit volumetric representation of the

dense reconstruction (similar to that used in [16]) allows

for a very efficient fusion of the dense reconstruction with

the reconstructed object shape. The resulting system has a

number of advantages over previous work: the dense recon-

struction provides depth information to the tracker, leading

to an improvement in pose and shape convergence and ac-

curacy, while the tracker provides higher level object-based

information to the SLAM, which means that (i) (some of

the) unseen parts of the scene can be reconstructed, (ii) the

scale of the map can be accurately estimated and; (iii) spec-

ularities on the object, which often cause image based dense

SLAM to be erroneous, are less problematic.

The remainder of the paper is organized as follows. In

Section 2 we describe our dense SLAM system. Next, in

Section 3 the semantic part of the system is described, in-

cluding the recognition of an object together and the estima-

tion of its refined pose and shape. In Section 4 we present

the way the information provided by the shape prior based

estimator can be integrated into the dense SLAM. Finally,

results are shown in Section 5.

2. Dense SLAM
Our dense SLAM system is structured as follows: firstly,

assuming known camera pose from the PTAM system [11],

dense depth maps are built using a brightness constancy

assumption. Each depth map is subsequently fused into a

global volumetric representation of the scene.

2.1. Local Depth Map Estimation

Closely mirroring the approach of [15], we formulate the

initial depth map estimation problem as one of finding the

depth of each point that is seen in one reference image. Fol-

lowing various prior art (e.g. [21]) [15] assumes known

camera intrinsic and extrinsics and uses photo-consistency

as a proxy for depth; viz, a point on a lambertian surface in

the scene should project to the same colour in all the frames

of the sequence, so the search for depth can be treated as a

search for best photo-consistency.

More formally, let u denote the coordinates of a pixel

in the reference image Ir. The photo-consistency error of a

3D point along the ray corresponding to the pixel u and with

a local depth d is measured as the normalized accumulated

error between the colour on its projection in the reference

image Ir and the colour on its projection onto the following

frames Im:

C(u, d) =
1

Np

∑
m

‖Ir(u) − Im

(
π(mMrπ

−1(u, d))
)‖1. (1)

where π−1(u, d) refers to the transformation from the pixel

coordinates and depth that brings to its homogeneous co-

ordinates in the camera frame (computed using the intrin-

sic parameters of the camera). mMr is the SE(3) matrix

that maps the coordinates of a point in the reference cam-

era frame into its coordinates in the camera frame m, this

matrix is available from PTAM providing the world to cam-

era(s) transformation mMw using mMr = mMw
rMw

−1.

π is the function that projects the homogeneous coordinates

of a point in the camera frame into its pixel coordinates in

the image plane. Np is the number of valid projection of the

considered point along the sequence.

Searching for the actual surface along one ray is then

equivalent to searching for the depth d that leads to the min-

imum photo-consistency error. The points along each ray

are evenly sampled along the inverse depth so that the cor-

responding epipolar lines are evenly sampled. The depth es-

timate resulting from this process is however noisy, since (i)

for many pixels, the brightness constancy is not respected;

(ii) the pixels themselves are noisy, (iii) the evaluation space

is discretised and (iv) uniform regions lack colour informa-

tion.

To improve the depth map the standard approach is to

regularise with a weak prior that favours continuous depth

in uniform regions. This yields the following energy min-

imisation over the depth map d(u):

E(d(u)) =
∫
I

g(u)‖�d(u)‖ε + γC(u, d(u))du (2)

where g(u) is computed with respect to the reference im-

age gradients, so that g is equal to 1 where Ir is uniform

(see [15] for further details). �d(u) is the depth map gra-

dient, γ is a scalar weighting the effect of the regularization

over the photo-consistency and ‖·‖ε is the Huber norm of

the intensity difference [25]. To solve this optimisation a

primal-dual total variational approach is used.

2.2. Robust Map Representation

The process above can be repeated for several reference

frames, and the resulting depth maps merged into a single

global map. While [15] and others (e.g. [14]) simply accu-

mulate the corresponding meshes, this has several disadvan-

tages: first, it does not give any occupancy information even

though this information is fundamental for many applica-

tions; second, measurement errors in individual meshes are

never corrected so the benefit of the extra data frommultiple

mesh depth estimates at a single point is lost.

To address this limitation we fuse the local depth maps

into a dense volumetric parametrization of the 3D world
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akin to that used in [26, 10, 16]. The volume is discretised

as a 3D grid of voxels, each containing two components: (i)

F , the value of a signed distance function representing an

approximation of the distance from the voxel to the closest

volume surface, truncated to a maximum value μ to yield

a Truncated Signed Distance Function (TSDF); and (ii) W ,

the weight corresponding to the confidence or amount of

information accumulated by the voxel. The surface is re-

covered from this representation as the TSDF zero level set.

Each time a new depth map is generated, the values in the

TSDF are updated to take the new information into account

following a similar process to the one in [16]. Each voxel

of the volume is updated as a weighted average of F k, the

current estimate of the minimum distance to the surface, and

F ′, the distance as estimated in the new depth map:

W k+1 = W k + W ′ F k+1 =
F k.W k + F ′.W ′

W k+1
(3)

HereW ′ ∈ [0, maxW ] denotes the confidence in the new in-

formation and is a function of the angle between the surface

normal and the optic ray, with greater confidence associated

with frontal surfaces (and near zero confidence for surfaces

tangential to an optic ray). Thus the new (approximate)

distance to the surface is a weighted average of all previ-

ous measurements, helping to smooth out errors. Since in

almost all respects our implementation closely follows the

prior art, we refer the reader to [5] for further details.

3. Incorporating object knowledge
Our objective in this paper is to show how the ability

to detect objects and incorporate them into a SLAM map

is beneficial, as a step towards a more object-based, more

semantically meaningful map. We propose a three stage

process to this end: (i) in parallel with the depth-map ac-

quisition, we search the raw 2D images acquired by the sys-

tem for instances of a known object class using a sliding-

window detector; from a set of detections, a first estima-

tion of the object’s pose and scale is performed; (ii) subse-

quently (and still in parallel with the depth-map estimation)

we segment the object, and refine its pose, shape and scale

so as to match the segmentation and depth-based cues; (iii)

finally, this is fused with the volumetric representation. This

process has been implemented in a multi-threaded architec-

ture that achieves real-time performance.

3.1. Image-based object detection and localisation

While the dense SLAM system continually acquires new

depth meshes at key-frames and fuses these into a global

volumetric representation, in parallel we run a part-based

object-class detector based on the effective procedure de-

scribed in [9]. Although this cannot proceed at frame-rate,

it does not need to. Rather, we process the most recent

key-frame with the detector. If an object is found, further

processing ensues (see below) but if not, the process re-

trieves the most recent key-frame and tries again. Using

our implementation (based on [22]) we can process a single

320 × 240 frame in 2.1s on average. The use of this object

class detector has several advantages in our context: it can

detect object-classes that exhibit considerable in-class vari-

ation; it provides an object orientation estimation; we can

use the location and types of the parts to estimate a rough

2D segmentation which in turn allows us to bootstrap a fore-

ground/background appearance model from the image data.

To perform the optimization using shape priors, it is first

necessary to have a coarse estimation of the pose of the de-

tected object. To estimate this pose, we use a combination

of the data available from the detector and from the dense

SLAM map as follows. First, we triangulate a rough object

centre in 3D by back-projecting the centre of the detection

in two different views. We thus require a detection in at least

two key-frames before proceeding to estimate the pose [12].

This of course incurs a delay, but does also help eliminate

some false positives, since these are less likely to persist

across frames than true positives.

Next, we estimate the vertical axis of the object by find-

ing its supporting plane using the dense SLAM map. To

do so, we make the assumptions that (i) there is indeed a

supporting planar surface; and (ii) the supporting plane is

unoccluded in the immediate area around the object. In

particular, we sample depth values from pixels located im-

mediately below the object in the key-frames and apply

RANSAC to the resulting point cloud (see Figure 1(b)).

To estimate the second (and hence third and final) princi-

pal direction we consider the projection of the part configu-

ration from the Felzenszwalb detector [9]. To cope with dif-

ferent generic views of a 3D object (side-on, three-quarter,

etc) their algorithm defines a set of detectors, one per view,

referred to by the authors as components. For instance, in

the car model trained on the PASCAL 2007 dataset, the de-

tector has 6 components from which the principal direction

can be estimated. Using only 6 components to represent the

full set of positions of the object around the vertical axis

provides a coarse direction estimation, which we improve

by interpolating the results from at least two views.

Finally, the size of the object is estimated using the size

of the projection of the detected object in the first image

and the depth of the object available from an initial triangu-

lation. This, together with the intrinsic camera calibration,

is sufficient to yield an estimate of the size of the object.

3.2. Low-level image statistics

An important feature of the detector is that it provides

the position in the image of the object’s parts. We lever-

age this information to build foreground and background

colour models for the detected object as a whole. For each

part we assume the availability of a trimap that denotes the
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Figure 1. Coarse object pose initialization: (a) Result of the part based detector and related part priors, (b) supporting plane estimation, (c)

set of principal angles resulting from the detections (yellow: from detection in first reference, green: second reference) and principal angle

interpolation in red, (d) pose from detection, (e) pixel foreground posteriors with which the pose is refined.

set of pixels that, in instances of this part, are always fore-

ground, or always background, or vary1. Colour histograms

of both foreground P (y|Cf ) and background P (y|Cb) are
then easily created (here y represents the image pixel colour

at location u). Since the parts are not always well located,
the histograms can be affected by outliers, so to mitigate this

effect, we use only coarse bins (6 × 6 × 6). For each pixel

u, from these histograms can be defined the foreground and

background posterior probabilities:

Pf (u) =
P (Cf |y)

ηf
=

P (y|Cf )
ηfP (y|Cf ) + ηbP (y|Cb)

Pb(u) =
P (Cb|y)

ηb
=

P (y|Cb)
ηfP (y|Cf ) + ηbP (y|Cb)

(4)

with ηf and ηb being the number of pixels in the foreground

and background regions respectively.

The process is illustrated in Fig.1(a) where each part of

the detected object is represented with its relative segmenta-

tion (black region represents the background, white is fore-

ground and gray is unknown) and the foreground per-pixel

posterior probability shown in Fig.1(e) where white repre-

sents high probabilities and black low ones.

3.3. Prior based shape and pose estimation

To segment the object in 3D (and subsequently fuse

this information back into the volumetric model), we use

a method similar to [19]. 3D shapes are represented vol-

umetrically as Signed Distance Functions (SDFs), with the

object surface implicitly defined by the zero-level set – mak-

ing this a natural candidate for use with the volumetric mod-

els produced using the methods in Section 2. Within-class

shape variation is represented via a low-dimensional em-

bedding of the otherwise very high-dimensional 3D shape-

space. The SDFs are first compressed using the Discrete

Cosine Transform, retaining the n lowest frequencies in the

DCT. The resulting space of DCT coefficients is then used

to train a GP-LVM with a low-dimensional latent space.

[18, 19] showed that this representation could more effec-

tively capture useful within-class shape variation, and ex-

clude out-of-class variation, than other competing methods

1Though the trimaps could be learned from good segmentations of

training data, in practice we crafted these trimaps manually

such as PCA [24] or kPCA [6]. Unlike [19] however, in our

current context, we have camera pose and depth informa-

tion available from the SLAM system, which we aim to use

to improve the object pose and shape recovery results. This

implies, on the one hand, the need for a modified energy

function (i.e. one that also takes depth into consideration),

and, on the other hand, the need to match the scale between

the SLAM system and the learned object coordinate system.

Our aim therefore becomes, for objects detected

within the scene, the simultaneous recovery of 3D shape
(parametrised by the latent space), 6D pose and scale. We

do this by defining an image and depth based energy func-

tion, finding its derivatives w.r.t. pose, scale and shape and

using standard nonlinear minimisation techniques. Next we

detail our energy function and its optimisation.

3.3.1 Energy Function

Our dense SLAM system provides pose and depth informa-

tion over multiple frames coming from a single monocular

source. We use the nv key-frames from this data stream as

multiple views in our joint 3D shape / 3D pose optimisa-

tion. Considering an image-depth domain Ωv consisting of

the image-depth points x (i.e. image coordinates and depth)

from a key frame v, and the corresponding points X0 in the

object coordinate frame, we write our energy function as:

E(Φ) =
1
nv

∑
v

(
Ev

i (Φ) + αEv
d(Φ)

)
(5)

Ev
i (Φ) =

∑
x∈Ωv

log(πv(Φ)P v
f (x) + (1 − πv(Φ))P v

b (x))

(6)

Ev
d(Φ) =

∑
x∈Ωv

( Φ(X0)2

Φ(X0)2 + σ

)
(7)

where Φ is a 3D SDF. This energy function combines an

image based error Ev
i (Φ) and a depth based one Ev

d(Φ),
with α representing the balance between the two. Note that

there is a principled, probabilistic explanation behind this

coupling, as each part of the energy function can be written

as the log of a per pixel joint probability. Furthermore, since

the two parts of the energy function are sums of per-pixel
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values, we can perform the multi view information fusion

by simply averaging the per-view energy function values.

Ev
i (Φ) measures the discrimination between statistically

defined foreground and background regions, as a function

of the projected 3D SDF Φ, using the functions Pf and Pb

from eq (4) in each reference view v. This measure, first

proposed for 2D tracking by [2], is in contrast to the full ran-

dom forest classfier used in [19] to obtain image statistics.

Here we can use these much weaker (and therefore much

faster to compute) image statistics because of the availabil-

ity of multiple views. πv(Φ) projects Φ to a 2D occupancy

map, with value 1 inside the projection outline and 0 out-

side. It does this by evaluating, for each pixel in the image-

depth domain Ωv , the probability of it being a projection of

a voxel “inside” the 3D SDF Φ. This is written as:

πv(Φ) = 1−exp
( ∑
all X0 on ray

log
(
1 − eΦ(X0)ζ

eΦ(X0)ζ + 1
))

(8)

where ζ controls the smoothness of the projection (we use

ζ = 0.75). This expression is matematically equal to the

product of the innermost terms of the logarithm, but we

chose to evaluate it as an exponential of a sum of logarithms

for improved numerical stability.

Ev
d(Φ) represents the negative log of the joint probabil-

ity that selected image-depth points x back-project onto the

zero level of Φ (i.e the surface of the 3D object model),

using the pose corresponding to view v and assuming pixel-

wise independence. The probability that an image-depth

point lies on the object surface is equal to the probability

that the back projected 3D point lies on the zero-level of the

SDF. We compute this probability as the negative exponen-

tial of the robust German-McClure function [3]:

P (X|Φ,Ωv) = e
− Φ(X0)2

σ+Φ(X0)2 (9)

This probability equals one when a depth pixel is back-

projected onto the zero-level of the SDF and decreases

monotonically at a rate controlled by σ (we used σ = 100).
This approach was also used in [20], in which depth data

coming from a Microsoft Kinect unit was used for simul-

taneous model based 3D tracking and calibration. Unlike

[20] however, here we (i) also make use of the RGB image

data, (ii) adapt the shape of the object and (iii) use the dense

SLAM system to provide depth data.

To minimise this energy, we compute its derivatives

with respect to pose, shape and scale and use them in a

Levenberg-Marquardt style nonlinear minimisation.

3.3.2 Pose/Scale Derivatives

Each image-depth point x in a view v is the projection

of a point X in the camera coordinate frame, which it-

self has a corresponding point X0 in the object coordinate

frame. The transformation from X to x is parametrised by

the camera intrinsic parameters corresponding to view v.
The transformation from X0 to X is X = vMoX0, where
vMo = vMw

wMo with vMw being the SE(3) transforma-

tion from the world to the reference camera v coordinates

defined in Section 2. wMo is the transformation from ob-

ject to world coordinates, i.e. the unknown object pose and

scale. This is in contrast to [19], which required no partition

for vMo, as only a single view was used.

Let λp, p ∈ 1, . . . , 7 represent the unknown 6 DoF pose

parameters (three for translation and three for Rodrigues

represented rotation) and the unknown scale. The deriva-

tive of our energy function wrt. λp is:

∂E

∂λp
=

1
nv

∑
v

(∂Ev
i

∂λp
+ α

∂Ev
d

∂λp

)
(10)

∂Ev
i

∂λp
=

∑
x∈Ω

P v
f (x) − P v

b (x)
πv(Φ)P v

f (x) + (1 − πv(Φ))P v
b (x)

∂πv

∂λp

(11)

∂Ev
d

∂λp
=

∑
x∈Ω

2σΦ(X0)
(Φ(X0)2 + σ)2

∂Φ
∂λp

(12)

where

∂πv

∂λp
= (1 − πv(Φ))

∑
z

eΦ(X0)ζ

eΦ(X0)ζ + 1
∂Φv

∂Xv
n

∂Xv
n

∂λp
(13)

∂Φ
∂λp

= − ∂Φ
∂X0

(vMo)−1vMw
∂wMo

∂λp
(vMo)−1X (14)

As in [19], in order to make the computation of ∂πv

∂λp
eas-

ier, we use OpenGL-style normalised device coordinates for

Φ and X. In this coordinate system the 3D SDF Φ is trans-

formed into Φv , using the pose, scale and intrinsics corre-

sponding to view v. Also, the 3D point that projects to x
under the known camera calibration for view v is now de-

noted by Xv
n. Therefore, using the chain rule, we can write:

∂Xv
n

∂λp
=

∂Xv
n

∂X
∂X
∂λp

(15)

where
∂Xv

n

∂X are the derivatives of the standard normalised

device coordinate conversion (i.e. projection and normal-

isation of the Z coordinate) and ∂X
∂λp

follow in a straight-

forward manner as derivatives of X = vMw
wMoX0, wrt.

pose and scale. Finally, the derivatives ∂wMo

∂λp
are computed

analogously and ∂Φ
∂X0

and ∂Φv

∂Xn
are computed numerically.

3.3.3 Shape Derivative

Our aim is to capture and use prior knowledge on the pos-

sible 3D shapes an object can take. We do this, in a manner

similar to [19], by using a dimensionality reduction tech-

nique called Gaussian Process Latent Variable Models, to

learn nonlinear and probabilistic latent shape spaces.
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Using a nonlinear minimisation, GP-LVM finds, for a

set of n high dimensional variables H = [h1, . . . ,hn], a
set of low dimensional variables L = [l1, . . . , ln] and the

hyperparameters of a Gaussian Process (GP) mapping L
into H. In our case the high dimensional variables H are

128 × 128 × 128 SDFs, compressed, for tractability, using

the first 25×25×25 harmonics of the discrete cosine trans-

form (DCT). The derivatives of the energy function wrt.

each dimension of l, denoted by lq follow analogously to

those wrt. pose and scale, by replacing ∂Φv

∂Xv
n

∂Xv
n

∂λp
with ∂Φv

∂lq

and ∂Φ
∂λp

with ∂Φ
∂lq

. These final two derivatives are the ones

of the standard GP-LVM generative process [13], on which

the inverse DCT transform has been applied.

4. Map update
Once the shape and pose estimation of the object has

converged (as measured using the standard Levenberg-

Marquardt test), we fuse the shape SDF Φ with the global

map. To do so, we use the same formulation as in equation

3. The new distance F ′ is defined by the object SDF while

the confidence W ′ (or weight) in this distance is defined so

that only the voxels close to the object surface are modified:

W ′(x) =
{

maxW −W k(x), if Φ(x) < η
0, otherwise

(16)

W ′ is set to be maximum close to the object’s surface so

that the information provided by the prior-based optimiza-

tion overwhelms the less accurate depth regularization ac-

cumulated by the dense SLAM system.

Following this merger, it is likely that some voxels will

have a well-defined distance value but no colour informa-

tion, since they have never been observed directly by the

camera, and instead arise from the object shape. In the ex-

periments reported in this paper, we make an expedient as-

sumption that the colour information can be propagated via

symmetry: we use the vertical plane that cuts the object in

two along its major horizontal axis, and update the colour

of each uncoloured voxel of the car with the colour from its

symmetrical correspondence.

5. Implementation and results
Our system has been implemented using C++ and CUDA

on a quad-core 3.4 GHz PC equipped with two GTX 480

GPU and a webcam acquiring images with a 640×480 pix-

els resolution.

One thread and one GPU are devoted to performing the

dense reconstruction and fusion of the volumetric represen-

tation. Since the photo-consistency error computation and

TSDF update are highly parallelisable, depth-map genera-

tion and volumetric fusion runs in real-time: the accumu-

lation of the photometric error takes 12 ms for each input

frames; the total variational energy minimisation typically

takes 20 ms; new depth-maps are merged into the global

TSDF in 6 ms.

A second CPU thread and second GPU perform the ob-

ject detections and the subsequent segmentation and pose

estimation using shape priors. The detection process uses

the open-source code from [22] and takes 2.1s on 320×240
sized images. Though this is time-consuming, only the ref-

erence frames that are used to compute a depth map are

processed, this happens parallel with depth-map computa-

tion and so has no immediate impact on the tracking and

mapping part of the system. The shape-prior segmenta-

tion and pose optimization runs at 40ms per iteration us-

ing the depths and colours in 2 key-frames, and typically

requires about a hundred iterations to converge. The addi-

tion of further key-frames tends to improve the accuracy and

convergence properties, as illustrated in Figure 2, but at the

expense of extra computation per iteration (approx. 20ms

per extra key-frame, per iteration). After convergence, the

merger of the object’s TSDF with the global one is accom-

plished as above, in 6ms.

Refined pose Refined pose

Coarse pose from 2 views from 3 views

V
ie
w

1
V
ie
w

3

Figure 2. Effect of the number of views used for the object

shape/pose estimation. Resulting object projected onto views of

the per-pixel fg/bg membership probabilities. (left) initial coarse

pose (Section 3.1); (middle) shape/pose estimate after conver-

gence using two key-frames; (right) the addition of a further key-

frame yields a better final estimate of the pose and shape.

An example of the system in action is shown in Figure 3

and in the supplementary material. Note that in the recon-

struction without considering the known object detection

and segmentation (first row) the shape of the car is merged

into the background because there is no visual evidence to

separate them, while the additional shape knowledge fol-

lowing the detection and segmentation correctly separates

the rear, unobserved part of the car from the rest of the

scene. A second example in Figure 4 shows how transpar-

ent and specular objects result in corrupted surfaces from

“standard” dense SLAM, are corrected via the object shape

calculation.

After the addition of an object to the map, the process

continues as before, merging new depth-maps with the vol-

umetric model, and further detections can be made to merge

additional objects. In this case some care must be exercised

12911291129112931293



Figure 3. First row : Fong reprojection of the reconstruction without priors, second row: with priors, third row: textured with priors.

to ensure that detections are matched correctly between key-

frames. In our present implementation objects are treated

sequentially (i.e. only one object can be segmented and

merged at a time), with basic colour models used to ensure

the fidelity of the matches between key-frames. An example

of the resulting reconstruction is illustrated in figure 5.

��� ��� ���

Figure 4. Reconstruction with specularities and transparent sur-

faces: (a) scene, (b) reconstruction without priors, (c) reconstruc-

tion with priors.

��� ��� ���

Figure 5. Reconstruction of multiple objects: (a) scene, (b) recon-

struction without priors, (c) reconstruction with priors.

Finally, an experiment is proposed to quantify the im-

provement over the quality of the dense reconstruction. Al-

though obtaining proper ground truth is problematic, we use

the dense reconstruction from KinectFusion [16] as a rea-

sonable proxy (note that KinectFusion uses an RGB-D cam-

era and fuses the sensor’s depth maps, in contrast to dense

monocular SLAM that uses only a single standard camera).

The reconstruction error measure is computed to be the av-

erage value of the estimated TSDF over the ground truth

surface (thus wherever the TSDF zero level coincides with

the ground truth surface the error contribution is zero). Fig-

ure 6 shows the evolution of the reconstruction error over

the whole resulting volume and over the the voxels close

to the object together with the reconstruction steps (new

depth map integrated in frames 247, 598 and 884 and object

merged in frame 1107). As the figure shows, the reconstruc-

tion error start at a value of 20, equal to the SDF threshold

(no surface defined) and gets lower at every merged depth

map as well as when the object is merged particularly in the

vicinity of the object, confirming the improvements result-

ing from the use of the shape priors.
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Figure 6. Evolution of the reconstruction surface and its error with

the integration of new depth map and object shape and pose.

6. Conclusion
We have shown that the use of object-specific knowl-

edge can be incorporated into a SLAM system to improve

the estimation of the maps produced. In particular we have

demonstrated a real-time, end-to-end fully automatic sys-
tem that combines several state-of-art techniques – in dense

SLAM, object detection and 3D segmentation and pose esti-

mation – for finding dense scene structure that can take into

account high-level prior shape information. This is shown

to have the benefit of improving the map in non-lambertian

parts of the scene, and even allowing depth estimates in

unobserved parts of the scene. More generally we see the

incorporation of object-specific knowledge into SLAM, as

demonstrated here and by others, as a step towards more

semantic levels of representation, a bridge between the ge-

ometric reconstruction of traditional SLAM and structure-

from-motion, and the more semantically meaningful maps

that humans are comfortable with.

One point of weakness of the system is in the limited ap-
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pearance model we use for the object segmentation. Though

colour histograms can provide accurate segmentations in

many cases, if there is colour confusion between the fore-

ground and background the segmentation is prone to fail.

Having made a detection using [9], we currently discard the

underlying image evidence used by that detector other than

to aggregate the colour histogram. A tighter coupling be-

tween the detection process and the shape/pose optimisation

could improve matters.

At present we have adopted a volumetric representation

closely mirroring [16] in which the confidence in the TSDF

value at a voxel is given by sensible but ultimately fairly

ad-hoc weight. In fusing the dense SLAM depth data this

works well, but it is not immediately clear if there is a rig-

orous way to set the weights for the TSDF coming from the

shape-prior source. Presently we take the expedient of us-

ing high (maximum) weights for the object TSDF, but this

has the disadvantage that further shape refinement cannot

be seamlessly intergrated. More ambitiously, a characteris-

tic of the objects we hope to identify and segment as part

of the system is that they can potentially move. [19] shows

that segmentation and tracking using volumetric models is

indeed possible, but our global volumetric representation

does not currently admit moving objects.
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