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Abstract. This paper presents a stereo vision-based scene model for
traffic scenarios. Our approach effectively couples bottom-up image seg-
mentation with object-level knowledge in a sound probabilistic fashion.
The relevant scene structure, i.e. obstacles and freespace, is encoded us-
ing individual Stixels as building blocks that are computed bottom-up
from dense disparity images. We present a principled way to additionally
integrate top-down prior information about object location and shape
that arises from independent system modules, ranging from geometric
cues up to highly confident object detections. This results in an efficient
exploration of orthogonal image-based cues, such as disparity and gray-
level intensity data, combined in a consistent scene representation. The
overall segmentation problem is modeled as a Markov Random Field and
solved efficiently through Dynamic Programming.
We demonstrate superior segmentation accuracy compared to state-of-
the-art superpixel algorithms regarding obstacles and freespace in the
scene, evaluated on a large dataset captured in real-world traffic.

1 Introduction

Visual scene understanding is a key problem for autonomous driving and robotics.
Especially the knowledge of obstacles that limit the available freespace is cru-

Fig. 1: Original Stixel world (top) and our extension (bottom). Stixel classes are
freespace (transp.), obstacle (red), sky (blue), vehicle (green), guard rail (yellow).
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cial for navigation and collision avoidance. This segmentation task was tackled
using dense stereo imaging by Badino et al. [4], and resulted in the so-called
Stixel world. Subsequently, the model was extended by Pfeiffer et al. [22] to
a full image segmentation providing a compact medium-level scene represen-
tation accurately capturing multiple depth-layers of objects. These superpixels
reduce the complexity for subsequent image processing tasks and are success-
fully used for numerous applications, such as semantic segmentation [23], object
detection [5, 12], mapping [21] or segmentation of dynamic objects [13].

However, Stixels are solely based on dense stereo and a strongly simplifying
world model with a nearly planar road surface and perpendicular obstacles. Thus,
whenever depth measurements are noisy or the world model is violated, Stixels
are prone to errors. As can be seen in Fig. 1 top, the car in the center lane,
the distant truck and the guard rails are not accurately segmented. In contrast
to the bottom-up Stixel segmentation, top-down object detectors do not suffer
from the mentioned limitations but are specific for one object class, e.g. vehicle,
pedestrian or guard rail, and do not provide a generic scene representation.

The main contribution of this work is to show a principled way to incor-
porate such top-down prior knowledge into the Stixel generation combining the
strengths of both methods. We follow a probabilistic approach that allows to find
the optimal solution of an extended world model. The additional information not
only improves the representation of the detected object classes, but also influ-
ences the inference of other parts in the scene, e.g. the freespace. We evaluate
our approach in a highway scenario using detectors for vehicles and guard rails,
see Fig. 1 for an exemplary output. From a practical point of view, the resulting
Stixel world unifies various sources of information and provides a clean, simple
and consistent interface for subsequent processing stages.

1.1 Related Work

We see four major categories of publications related to our work. The first con-
tains algorithms for unsupervised image segmentation [1, 3, 15]. Such methods
do not use any semantics and aim for a generic representation of the scene with
reduced complexity. Most algorithms are based on appearance only, but there
are some that also utilize stereo [26, 30]. The Stixel world [22] as introduced
above and extended in this publication is naturally closest related to our work.

The second category comprises top-down methods such as detectors for ob-
jects [8,10,18,27] or geometric shapes [9,17]. These detectors often show excellent
performance, but can only be applied to specific object classes and do not con-
tribute to an understanding of the remaining scene. In this work, we fill this gap
and show how to leverage detectors for improving the generic scene model.

The third category covers the task of semantic segmentation, i.e. each seg-
ment is associated with a class label. Such methods either operate on a pixel
level [19, 25] or use superpixels as smallest considered unit [6, 7, 16]. Although
our proposed algorithm provides an image segmentation with associated class la-
bels, we do not claim to perform semantic segmentation. Our labels are restricted
to be ground, sky, generic obstacle or those that object detectors provide, which
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is not sufficient for a full semantic labeling. However, the proposed Stixel world
is expected to serve well as superpixels for a subsequent labeling step [23].

The fourth and last category uses methods of the second category for seman-
tic segmentation [2,20,29]. From the methodology point of view, we see our work
closest related to publications in this group, using a probabilistic approach for
integrating top-down information in a bottom-up task. However, those methods
either reason on pixel-level [20, 29] or use superpixels as the finest element [2].
The first is generally computationally expensive and the latter cannot recover
from errors already present in the superpixels. Thus, in our work we use top-
down knowledge one step earlier, i.e. during the superpixel generation.

2 The Stixel World

In this Section, we describe the Stixel computation as introduced in [22]. How-
ever, we reformulate the Stixel world using a Markov Random Field (MRF) in
order to integrate object-level prior knowledge in Section 3.

The Stixel world S is a segmentation of an image I with size w × h into
so-called Stixels, where each pixel is assigned to exactly one Stixel. Such a Stixel
sui ∈ S can be seen as a superpixel, however restricted to be a vertical line
segment in a certain column u ∈ {1 . . . w} with bottom and top row vbui ≤ vtui. If
the image is horizontally sub-sampled, Stixels become the rectangles visualized in
Fig. 1. The enumeration i of Stixels within a column is such that vtui+1 = vbu,i+1.
According to the assumed world model, a scene is composed of a ground g,
perpendicular objects o and the sky s. Thus, each Stixel is associated with a class
cui ∈ {g, o, s} and a disparity dui ∈ R≥0. The latter is discretized, not defined for
the ground, represents the disparity of an object and is zero for the sky. Together,
a Stixel sui is sufficiently described by the tuple sui =

(
vbui, v

t
ui, cui, dui

)
.

2.1 Probabilistic reformulation

Treating all columns independently, searched Stixels Su: in column u are in-
terpreted as random variables Su: = (Su1,Su2, . . . ,Sunu

) for a fixed number
of Stixels nu. The measured disparity image in column u is denoted as du:,
being the observations of random variables Du:. The posterior P (Su: |Du:) is
defined using an MRF, depicted as a factor graph in Fig. 2. The graph provides
a factorization grouped into a likelihood Φ(du:, su:) and a prior Ψ(su:), giving

P (Su: = su: |Du: = du:) =
1

Z
Φ(du:, su:)Ψ(su:) , (1)

where Z is the normalizing partition function. The final segmentation s?ui is ob-
tained after selecting a model n?u and solving the maximum-a-posteriori (MAP)
problem

s?u: = argmax
su:

P (Su: = su: |Du: = du:) . (2)

Note that this problem can be solved efficiently using Dynamic Programming
(DP), see [22]. Model selection, measurement likelihood and prior are discussed
individually in the following, while omitting the column index u for readability.
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Fig. 2: Stixel world as an MRF. Each Stixel Si (horizontal boxes) stands for the
four random variables V t

i , V
b
i , Ci, Di (circles). The prior distribution factorizes

according to the labeled factors (black squares, descriptions given in the text).
The left part contains exemplary one observed disparity Dv (shaded circle) and
the connected factors of the measurement likelihood.

Model selection For selecting a model n?, first the maximum value p?n of the
posterior P (S: |D:) is determined for each model n ∈ {1 . . . h}. Each value p?n
is weighted with a model complexity prior exp(−αnu) and the model giving the
maximum result is selected. Approximating the partition function Z as being
constant for all models, model selection and MAP estimation are performed
simultaneously in one DP sweep without explicitly computing the maxima p?n.

Likelihood Assuming conditional independence of the disparities given the
segmentation, see Fig. 2, the likelihood factorizes as

Φ(d:, s:) =

h∏
v=1

n∏
i=1

Φv(dv, si) . (3)

The term Φv(dv, si) represents the disparity measurement model that describes
the probability of a value dv for a given Stixel si and is non-informative, i.e.
uniform, for Stixels not covering row v. For details on the likelihood see [22].

Prior The prior is modeled using the right part of the Markov random field
in Fig. 2. Most important is the first order Markov assumption on Stixel-level,
inducing conditional independence of a Stixel Si and its non-neighbors given its
neighbors. All factors belonging to the prior Ψ(s:) are introduced subsequently,
see their labels in Fig. 2.

The factors Ψ1st

(
vb1
)
, Ψnth(vtn), Ψt>b

(
vbi , v

t
i

)
, Ψcon

(
vbi , v

t
i−1

)
and Ψhor

(
vbi , ci

)
enforce a consistent segmentation: the 1st Stixel starts in row 1, the nth ends in
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row h, the top row vti is greater than the bottom vbi , Stixels are connected, i.e.
vbi = vti−1 + 1, and there is no sky below or ground above the horizon.

The factor Ψrcl(ci, ci−1) models the probabilities for relative class locations,
e.g. an object Stixel below of a ground one is less likely than vice versa. The
remaining factors Ψd1(di, ci) and Ψd

(
di, v

b
i , ci, ci−1

)
describe the probability dis-

tribution of disparities di. For ci = g the disparity value is not defined and
thus the distribution does not matter, whereas for ci = s the probability is only
non-zero for di = 0. In case of ci = o the factors split into two functions as

Ψd1(di, ci = o) = fblg(di, 1) (4)

Ψd

(
di, v

b
i , ci = o, ci−1

)
= fblg

(
di, v

b
i

)
fgrav

(
di, v

b
i , ci−1

)
. (5)

Both functions use the known camera geometry to derive the expected disparity
dg
(
vbi
)

of the ground in row vbi . Then a value di < dg
(
vbi
)

indicates an object
below the ground surface, which is unlikely and captured by fblg. Further, a
value di > dg

(
vbi
)

and a preceding class ci−1 = g means that the object is flying
above the ground, i.e. no gravity, which is rated with low probability by fgrav.

For details on the individual factors, see their corresponding probability dis-
tributions in [22].

3 Incorporating Priors

The original Stixel generation is solely based on the disparity image and com-
puted independently for each column. However, other sources of information are
often available that take into account the gray value image or multiple columns
in the disparity image. This information usually applies only to a specific class
and describes its rough location in the image, e.g. using a bounding box, a more
complex contour or just a line indicating one end of the object.

3.1 Generic prior model

We assume that for each kind of information j ∈ {1 . . .m}, we have a model
describing for all pixels the unnormalized probability of being a bottom or top
point of the object. The model takes into account the reliability of the source
of information, its importance for the Stixel generation, and also a possible
uncertainty in the precise location. Such a mapping from a given contour to
actual bottom and top point probabilities could either be obtained from training
data or by blurring the contour. Thus, each additional input that allows for
a meaningful mapping to such probability images can be used for the Stixel
generation, see Fig. 3. The resulting images are denoted as Bj ,T j ∈ Rw×h and
are zero where there is no input prior.

3.2 Probabilistic formulation

In order to use this information for the Stixel generation, we define additional
classes aj that we treat as objects if not stated otherwise. Let Bu:,T u: denote the
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Fig. 3: Probability images derived from the output of three different object de-
tectors: a bounding box, a precise contour and a line. Probabilities for the true
contours are encoded as intensities with blue for bottom and red for top points.

union of all bottom/top probabilities in column u, interpreted as given random
variables. Then Eq. (2) is modified to

s?u: = argmax
su:

P (Su: = su: |Du: = du:,Bu: = bu:,T u: = tu:) . (6)

We leave the likelihood unchanged and modify the prior using bu: and tu:. First,
the factor Ψrcl(ci, ci−1) is extended to model the relative location probabilities
of the introduced object sub-classes. All additional classes aj are forced to be
on the ground, i.e. Ψrcl(ci = aj , ci−1 = g) = 1 and Ψrcl(ci = aj , ci−1 6= g) = 0.
The case ci−1 = aj is treated as ci−1 = o. Second, we introduce an additional
factor Ψpi

(
vti , v

b
i , ci

)
being the only part where we make use of the bottom and

top point probability images. For ci being one of the standard classes g, o, s, the
factor Ψpi is 1. If ci is one of the additional classes aj , it holds

Ψpi

(
vti , v

b
i , ci = aj

)
= bj

(
vbi
)
tj
(
vti
)
, (7)

where bj(v) and tj(v) denote the values of bottom/top point probabilities for
class aj in row v. Where detections are present, bj and tj are typically greater
than 1, rating the class aj more likely than the standard classes. If bj or tj are
0, i.e. no matching detection, the factor Ψpi is 0 and hence also the probability
for aj . Third, we add the factor Ψht

(
vti , v

b
i , ci, di

)
that captures expectations on

the height of an object aj and evaluates to 1 for valid heights and 0 otherwise.
The height in world coordinates can be computed using the given arguments as
well as known camera parameters. The described adaptations add only minor
computational overhead and still allow for an efficient solution using DP.

4 Experimental Results

In the experimental section, we apply the extended Stixel model to a highway
scenario using two external sources of information. Significant improvement is
shown in two key properties: segmentation accuracy (Section 4.3) and freespace
estimation (Section 4.5). Results are compared to the original Stixel formula-
tion [22]. Additionally, the influence of our method on the precision of vehicle
Stixels is evaluated (Section 4.4). Throughout all experiments, we use identi-
cal parameters for our approach and only perform the modifications explained
above. Our method increases the runtime of the Stixel computation by 14 %.
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Fig. 4: Exemplary detections and resulting bottom/top point probabilities.

4.1 Priors

In this paper we focus on the methodology for incorporating external priors
in the Stixel computation. This general idea is independent of the particular
information used and can in principle extend to arbitrary object classes. For
the experimental evaluation, we utilize detectors for vehicles and guard rails,
both highly relevant for autonomous driving on highways. The vehicle detector
contributes to all three conducted experiments, see Sections 4.3 to 4.5, whereas
the guard rails mainly influence the freespace evaluation in Section 4.5. Possible
detector outputs and the resulting bottom/top point probabilities are visualized
in Fig. 4. Note how this knowledge helps to improve the Stixel world, see Fig. 1.

Vehicles Out of a multitude of proposed vehicle detectors [27], we opted for a
two-step system that couples high detection performance at large distances with
real-time computational efficiency. In particular, we rely on a very fast vehicle
detector, i.e. a Viola-Jones cascade detector [28], to create regions-of-interest
for a subsequent strong set of Mixture-of-Experts classifiers using local receptive
field features (LRF) [11]. In doing so, the output of the vehicle detector describes
the rough location of the vehicle’s rear side in the image and its associated
confidence value pconf. To incorporate prior knowledge about a vehicle’s shape,
both the bottom and the top boundary are blurred using a Gaussian truncated
at 3σ. The bottom one is centered on the boundary and has a rather small
variance. Since the top of a car is less accurately described by a line, we center
the Gaussian along a downwards parabola and increase the variance from the box
center towards its border, for an example see Fig. 3 left. The maximum value of
both probability images is set to pconf exp(αv). Eventually, we model the height
of vehicles between 0.5 m and 5 m using the factor Ψht, see Section 3.2.

Guard rails As guard rail detector, we use parts of [24], based on geometry and
appearance. First, the most prominent lines are found using a Hough transform
on the gradient image, while restricting the search space to lines matching the
expected slope. Only pixels with height values in the range of interest are con-
sidered. Second, lines whose disparity does not decrease linearly are discarded.
The remaining lines are the guard rail detections and are blurred using a ver-
tical Gaussian to model the top point probabilities with a maximum value of
exp(αgr). The height of guard rails is restricted to be between 0.4 m and 1.5 m.
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Fig. 5: Example from dataset containing manual annotations (random colors).

4.2 Dataset

For evaluation, we captured a stereo sequence of 2000 frames on a German
highway. Non-occluded vehicles up to very large distances are manually anno-
tated with pixel-accuracy. In addition, the first objects limiting the driving corri-
dor, mainly guard rails, are annotated with pixel-accuracy in every tenth frame.
Eventually, occluded and approaching vehicles are annotated as “ignore” with
bounding box precision. For an example see Fig. 5.

4.3 Segmentation Accuracy

One key requirement of the Stixel world is to represent the scene and contained
objects accurately. To evaluate this aspect, we focus on non-occluded vehicles,
since they are the most relevant objects on highways. In the conducted experi-
ment, our method is compared to state-of-the-art superpixel methods with simi-
lar runtime, namely SLIC [1] and graph-based image segmentation (GBIS) [15].

To evaluate the algorithms from a semantic point-of-view, we assign to each
generated superpixel the majority ground truth label of all covered pixels. Thus,
we obtain the upper performance limits of all possible systems for semantic seg-
mentation based on these superpixels. The average number of superpixels that
are needed to represent an object serves as a measure of the segmentation’s com-
plexity. To evaluate its accuracy, we do not use the PASCAL VOC intersection-
over-union (IU) [14], since this measure is dominated by foreground objects and
vehicles in larger distances have only little impact. Instead, we answer the ques-
tion of how well an object can be represented on average by computing the IU
for each vehicle individually and averaging the results, see Fig. 6 left. Further,
we investigate how many objects are accurately described via thresholding the
IU at 0.5 and determining the detection rate, see Fig. 6 right. To be independent
of the parameterization of the algorithms, evaluation is performed for a varia-
tion of the most relevant parameters (light markers) taken from [1, 15, 22] and
the upper left part of the convex hull (solid line) is used for comparison of the
methods.

The results show that the proposed method significantly improves the perfor-
mance of the Stixel segmentation and outperforms other state-of-the-art base-
lines. Especially vehicles in large distances are better segmented due to the
information provided by the detector. Note that our method can directly benefit
from stronger or additional detectors, whereas an incorporation into SLIC or
GBIS is not straightforward.
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Fig. 6: Our method compared to three baselines in terms of segmentation accu-
racy over segmentation complexity for the class vehicle. The latter is expressed by
the average number of superpixels per object. Accuracy is compared by provid-
ing the upper limits for any system based on these superpixels using the average
intersection-over-union (IU) per object (left) and the detection rate (right). Each
marker stands for one parameter set and solid lines connect the best performing.

4.4 Precision

The strength of our approach is the probabilistic integration of detector knowl-
edge into the scene model. In doing so, the whole scene structure in an image
column is jointly inferred and unlikely constellations such as vehicles above the
ground or inappropriately sized are captured. Thus, erroneous priors due to false
positive detections can be suppressed. Further, conflicts due to overlapping de-
tections between objects of the same or different classes are optimally solved,
referring to our scene model. These advantages manifest in a high precision of
vehicle Stixels. For evaluation, we use the parameter sets belonging to the four
red points highlighted in Fig. 6 right. For each setting, we measure the influence
of the scene model’s main parameter regarding vehicles, i.e. our confidence in the
vehicle detector αv, see Section 4.1. We evaluate the detection rate as defined
above and the precision of Stixels with class vehicle. Such a Stixel is consid-
ered a true or false positive depending on its covered pixels and their ground
truth labels. As baseline serves a more trivial approach for integrating object
bounding boxes into the original Stixel world. Here, the obtained segmentation
is post-processed to match the given boxes by adding or splitting Stixels where
needed and label all Stixels within a box as vehicle.

We significantly improve the precision compared to this baseline without re-
ducing the detection rate, see Fig. 7. Due to modeling the uncertainty of the
object’s location within a given bounding box, the detection rate is even in-
creased slightly. When weakening the coupling of the detectors by decreasing
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Fig. 8: Freespace detection rate of orig-
inal Stixels compared to our proposal.
For each Stixel column, the freespace
counts as detected, if the deviation of
estimation to ground truth is within
the range ∆th.

αv, the precision improves even more, however at the cost of a lower detection
rate.

4.5 Freespace estimation

For each Stixel column, we extract the row v delimiting the freespace from ground
truth. This row is compared to the bottom of the first detected obstacle Stixel
from the baseline implementation and our approach, see the transparent areas
in Fig. 1. Thresholding this difference at ∆th allows measuring the freespace
detection rate, see Fig. 8. Our proposed method outperforms the baseline, even
though we do not explicitly influence the freespace estimation. However, due to
the joint inference of the whole scene, better detections of delimiting objects, i.e.
vehicles and guard rails, helps to obtain an overall improved segmentation.

5 Conclusion

This work presented a principled method to integrate top-down object-level pri-
ors into bottom-up Stixel segmentation. Our approach outperformed state-of-
the-art in terms of segmentation accuracy and freespace estimation at real-time
speeds. For future applications, we expect our model to generalize well to addi-
tional classes of information beyond the ones presented in this paper. In addition,
our approach provides powerful superpixels for semantic segmentation systems
used for rural or urban traffic scenes. Ultimately, this enables to recover a much
stronger understanding and interpretation of complex dynamic scenes.
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