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Abstract

In this paper, we tackle two key aspects of multiple target

tracking problem: 1) designing an accurate affinity measure

to associate detections and 2) implementing an efficient and

accurate (near) online multiple target tracking algorithm.

As for the first contribution, we introduce a novel Aggre-

gated Local Flow Descriptor (ALFD) that encodes the rel-

ative motion pattern between a pair of temporally distant

detections using long term interest point trajectories (IPTs).

Leveraging on the IPTs, the ALFD provides a robust affin-

ity measure for estimating the likelihood of matching de-

tections regardless of the application scenarios. As for an-

other contribution, we present a Near-Online Multi-target

Tracking (NOMT) algorithm. The tracking problem is for-

mulated as a data-association between targets and detec-

tions in a temporal window, that is performed repeatedly at

every frame. While being efficient, NOMT achieves robust-

ness via integrating multiple cues including ALFD metric,

target dynamics, appearance similarity, and long term tra-

jectory regularization into the model. Our ablative anal-

ysis verifies the superiority of the ALFD metric over the

other conventional affinity metrics. We run a comprehen-

sive experimental evaluation on two challenging tracking

datasets, KITTI [16] and MOT [2] datasets. The NOMT

method combined with ALFD metric achieves the best ac-

curacy in both datasets with significant margins (about 10%
higher MOTA) over the state-of-the-art.

1. Introduction

The goal of multiple target tracking is to automatically

identify objects of interest and reliably estimate the motion

of targets over the time. Thanks to the recent advancement

in image-based object detection methods [9, 13, 17, 34],

tracking-by-detection [4, 6, 10, 25, 27] has become a pop-

ular framework to tackle the multiple target tracking prob-

lem. The advantages of the framework are that it naturally

identifies new objects of interest entering the scene, that

it can handle video sequences recorded using mobile plat-

forms, and that it is robust to a target drift. The key chal-

lenge in this framework is to accurately group the detec-
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Figure 1. Bounding box distance and appearance similarity are

popularly used affinity metrics in the multiple target tracking lit-

erature. However, in real-world crowded scenes, they are often

ambiguous to successfully distinguish adjacent or similar look-

ing targets. Yet, the optical flow trajectories provide more reliable

measure to compare different detections across time. Although in-

dividual trajectory may be inaccurate (red line), collectively they

provide strong information to measure the affinity. We propose a

novel Aggregated Local Flow Descriptor that exploits the optical

flow reliably in the multiple target tracking problem.

tions into individual targets with high accuracy (data asso-

ciation), so one target could be fully represented by a single

estimated trajectory. Mistakes made in the identity main-

tenance could result in a catastrophic failure in many high

level reasoning tasks, such as future motion prediction, tar-

get behavior analysis, etc.

To implement a highly accurate multiple target tracking

algorithm, it is important to have a robust data association

model and an accurate measure to compare two detections

across time (pairwise affinity measure). Recently, much

work is done in the design of the data association algorithm

using global (batch) tracking framework [4, 25, 27, 37].

Compared to the online counterparts [6, 7, 10, 22], these

methods have a benefit of considering all the detections

over entire time frames. With a help of clever optimiza-

tion algorithms, they achieve higher data association accu-

racy than traditional online tracking frameworks. However,

the application of these methods is fundamentally limited

to post-analysis of video sequences. On the other hand, the

pairwise affinity measure is relatively less investigated in

the recent literature despite its importance. Most methods

adopt weak affinity measures (see Fig. 1) to compare two

detections across time, such as spatial affinity (e.g. bound-
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Figure 2. Schematic illustration of NOMT algorithm. (a) Given a set of existing targets A
t−1 and detections D

t
t−τ , (b) our method

generates a set of candidate hypotheses H
t using tracklets T . Constructing a CRF model with the hypotheses, (c) we select the most

consistent solution x using our inference algorithm and (d) output targets At are obtained by augmenting previous targets At−1 with the

solution H
t(x̂). See text (Sec. 4) for the details.

ing box overlap or euclidean distance [3, 4, 30]) or simple

appearance similarity (e.g. intersection kernel with color

histogram [31]). In this paper, we address the two key chal-

lenging questions of the multiple target tracking problem:

1) how to accurately measure the pairwise affinity between

two detections (i.e. likelihood to link the two) and 2) how

to efficiently apply the ideas in global tracking algorithms

into an online application.

As for the first contribution, we present a novel Aggre-

gated Local Flow Descriptor (ALFD) that encodes the rel-

ative motion pattern between two detection boxes in differ-

ent time frames (Sec. 3). By aggregating multiple local in-

terest point trajectories (IPTs), the descriptor encodes how

the IPTs in a detection moves with respect to another de-

tection box, and vice versa. The main intuition is that al-

though each individual IPT may have an error, collectively

they provide a strong cue for comparing two detections.

With a learned model, we observe that ALFD provides a

strong affinity measure. As for the second contribution,

we propose an efficient Near-Online Multi-target Tracking

(NOMT) algorithm. Incorporating the robust ALFD de-

scriptor as well as long-term motion/appearance models, the

algorithm produces highly accurate trajectories, while pre-

serving the causality and real-time (∼ 10 FPS) property. In

every frame t, the algorithm solves the global data associa-

tion problem between targets and all the detections in a tem-

poral window [t−τ, t] of size τ (see Fig. 2). The key property

is that the algorithm has the potential to fix any past asso-

ciation error within the temporal window when more detec-

tions are provided. In order to achieve both accuracy and

efficiency, the algorithm generates candidate hypothetical

trajectories using ALFD driven tracklets and solve the asso-

ciation problem with a parallelized junction tree algorithm

(Sec. 4). We perform a comprehensive experimental eval-

uation on two challenging datasets: KITTI [16] and MOT

Challenge [2] datasets. The proposed algorithm achieves

the best accuracy with a large margin over the state-of-the-

arts (including batch algorithms) in both datasets, demon-

strating the superiority of our algorithm.

2. Background

Given a video sequence V T1 = {I1, I2, ..., IT } of length

T and a set of detection hypotheses DT1 = {d1, d2, ..., dN},

where di is parameterized by the frame number ti, a bound-

ing box (di[x], di[y], di[w], di[h])
1, and the score si, the

goal of multiple target tracking is to find a coherent set of

targets (associations) A = {A1, A2, ..., AM}, where each

target Am are parameterized by a set of detection indices

(e.g. A1 = {d1, d10, d23}) during the time of presence.

Data Association Models: Most of multiple target track-

ing algorithms/systems can be classified into two cate-

gories: online method and global (batch) method. Online

algorithms [6, 7, 10, 22, 29] are formulated to find the as-

sociation between existing targets and detections in the cur-

rent time frame: (V tt ,D
t
t,A

t−1) → A
t. The advantages

of online formulation are: 1) it is applicable to online/real-

time scenario and 2) it is possible to take advantage of tar-

gets’ dynamics information available in A
t−1. Such meth-

ods, however, are often prone to association errors since

they consider only one frame when making the associa-

tion. To avoid such errors, [6] adopts conservative asso-

ciation threshold together with detection confidence maps,

or [7, 22, 29] model interactions between targets.

Recently, global algorithms [3, 4, 27, 30, 37] became

much popular in the community, as more robust associa-

tion is achieved when considering long-term information in

the association process. One common approach is to for-

mulate the tracking as the network flow problem to directly

obtain the targets from detection hypothesis [4, 30, 37]; i.e.

(V T1 ,D
T
1 ) → A

T . Although they have shown promising

accuracy in multiple target tracking, the methods are of-

ten over-simplified for the tractability concern. They ig-

nore useful target level information, such as target dynam-

ics and interaction between targets (occlusion, social in-

teraction, etc). Instead of directly solving the problem at

one step, other employ an iterative algorithm that progres-

sively refines the target association [3, 19, 25, 27]; i.e.

(V T1 ,D
T
1 ,A

T
i ) → A

T
i+1, where i represent an iteration.

Starting from short trajectories (tracklet), [19, 25] associate

them into longer targets in a hierarchical fashion. [3, 27]

iterate between two modes, association and continuous es-

timation. Since these methods obtain intermediate target

information, targets’ dynamics, interaction and high-order

statistics on the trajectories could be accounted that can lead

to a better association accuracy. However, it is unclear how

1[x], [y], [w], [h] operators represent the x, y, width and height value,

respectively.
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to seamlessly extend such models to an online application.

We propose a novel framework that can fill in the gap be-

tween the online and global algorithms. The task is defined

as to solve the following problem: (V t1 ,D
t
t−τ ,A

t−1) → A
t

in each time frame t, where τ is pre-defined temporal win-

dow size. Our algorithm behaves similar to the online algo-

rithm in that it outputs the association in every time frame.

The critical difference is that any decision made in the

past is subject to change once more observations are avail-

able. The association problems in each temporal window

are solved using a newly proposed global association algo-

rithm. Our method is also reminiscent of iterative global

algorithm, since we augment all the track iteratively (one

iteration per frame) considering multiple frames, that leads

to a better association accuracy.

Affinity Measures in Visual Tracking: The importance

of a robust pairwise affinity measure (i.e. likelihood of di
and dj being the same target) is relatively less investigated

in the multi-target tracking literature. Most of the recent

literature [3, 4, 30, 31] employs a spatial distance and/or

an appearance similarity with simple features (such as color

histograms). In order to learn a discriminative affinity met-

ric, Kuo et al. [25] introduces an online appearance learning

with boosting algorithm using various feature inputs such as

HoG [8], texture feature, and RGB color histogram. Milan

et al. [27] and Zamir et al. [31] proposed to use a global ap-

pearance consistency measure to ensure a target has a simi-

lar (or smoothly varying) appearance over a long term. Al-

though there have been many works exploiting appearance

information or spatial smoothness, few attempts are made to

incorporate optical flows in the multi-target tracking litera-

ture. Kalal et al. [20] showed a promising result in tracking

a single target using optical flow trajectories together with

median filtering. Similarly, Everingham et al. [11] calcu-

lates the portion of inlier trajectories over the outliers be-

tween face detections to cluster them in a movie. In con-

trast to these methods, ALFD encodes more fine grained

description of the local motion patterns and enables us to

learn a discriminative model via an explicit descriptor. Re-

cently, Fragkiadaki et al. [14] introduced a method to track

multiple targets while jointly clustering optical flow trajec-

tories. The work presents a promising result, but the model

is complicated due to the joint inference on both target and

flow level association. In contrast, our ALFD provides a

strong pairwise affinity measure that is generally applicable

in any tracking model.

3. Aggregated Local Flow Descriptor

The Aggregated Local Flow Descriptor (ALFD) encodes

the relative motion pattern between two bounding boxes in

a temporal distance (∆t = |ti − tj |) given interest point

trajectories [33]. The main intuition in ALFD is that if the

t  t + Δt 
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Figure 3. Illustrative figure for unidirectional ALFDs ρ′(di, dj).
In the top figure, we show detections as colored bounding boxes

(dred, dblue, and dgreen). A pair of circles with connecting lines

represent IPTs that are existing in both t and t + △t and located

inside of the dred at t. We draw the accurate (green), outlier

(black), and erroneous (red) IPTs. In the bottom figure, we show

two exemplar unidirectional ALFDs ρ′ for (dred, dblue) and (dred,

dgreen). The red grids (2 × 2) represent the IPTs’ location at t

relative to dred. The blue and green grids inside of each red bin

(2×2+2 external bins) shows the IPTs’ location at t+△t relative

to the corresponding boxes. IPTs in the grid bins with a red box

are the one observed in the same relative location. Intuitively, the

more IPTs are observed in the bins, the more likely the two detec-

tions belong to the same target. In contrast, wrong matches will

have more supports in the outside bins. The illustration is shown

using 2 × 2 grids to avoid clutter. We use 4 × 4 in practice that

yields a 16× (16 + 2) = 288 dimensional vector.

two boxes belong to the same target, we shall observe many

supporting IPTs in the same relative location with respect

to the boxes. In order to make it robust against small lo-

calization errors in detections, targets’ orientation change,

and outliers/errors in the IPTs, we build the ALFD using

spatial histograms. Once the ALFD is obtained, we mea-

sure the affinity between two detections (aA(di, dj)) using

the linear product of a learned model parameter (w∆t) and

ALFD (ρ(di, dj)), i.e. aA(di, dj) = w∆t · ρ(di, dj). In the

following subsections, we discuss the details of the design.

3.1. Interest Point Trajectories

We obtain Interest Point Trajectories using a local inter-

est point detector [5, 32] and optical flow algorithm [5, 12].

The algorithm is designed to produce a set of long and

accurate point trajectories, combining various well-known

computer vision techniques. Given an image It, we run

the FAST interest point detector [5, 32] to identify “good
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points” to track. In order to avoid having redundant points,

we compute the distance between the newly detected inter-

est points and the existing IPTs and keep the new points

sufficiently far from the existing IPTs (> 4 px). The new

points are assigned unique IDs. For all the IPTs in t, we

compute the forward (t→ t+1) and backward (t+1 → t)
optical flow using [5, 12]. The starting points of backward

flows are given by the forward flows’ end point. Any IPT

having a large disagreement between the two (> 10 px) is

terminated.

3.2. ALFD Design

Let us define the necessary notations to discuss ALFD.

κid ∈ K represents one IPT with a unique id. κid is pa-

rameterized by pixel locations (κid(t)[x], κid(t)[y]) during

the time of presence. We define κid(t) to denote the pixel

location at the frame t. If κid does not exist at t (terminated

or not initiated), ø is returned.

We first define a unidirectional ALFD ρ′(di, dj), i.e.

motion pattern from di to dj , by aggregating the infor-

mation from all the IPTs that are located inside of di
box and existing at tj . Formally, we define the IPT

set as K(di, dj) = {κid|κid(ti) ∈ di & κid(tj) 6=
ø}. For each κid ∈ K(di, dj), we compute the rel-

ative location ri(κid) = (x, y) of each κid at ti by

ri(κid)[x] = (κid(ti)[x]−di[x])/di[w] and ri(κid)[y] =
(κid(ti)[y]−di[y])/di[h]. We compute rj(κid) similarly.

Notice that ri(κid) are bounded between [0, 1], but rj(κid)
are not bounded since κid can be outside of dj . Given the

ri(κid) and rj(κid), we compute the corresponding spatial

grid bin indices as shown in the Fig. 3 and accumulate the

count to build the descriptor. We define 4 × 4 grids for

ri(κid) and 4× 4+2 grids for rj(κid) where the last 2 bins

are accounting for the outside region of the detection. The

first outside bin defines the neighborhood of the detection

(< width/4 & < height/4), and the second outside bin

represents any farther region.

Using a pair of unidirectional ALFDs, we define

the (undirected) ALFD as ρ(di, dj) = (ρ′(di, dj) +
ρ′(dj , di)) / n(di, dj), where n(di, dj) is a normalizer.

The normalizer n is defined as n(di, dj) = |K(di, dj)| +
|K(dj , di)|+λ, where |K(·)| is the count of IPTs and λ is a

constant. λ ensures that the L1 norm of the ALFD increases

as we have more supporting K(di, dj) and converges to 1.

We use λ = 20 in practice.

3.3. Learning the Model Weights

We learn the model parameters w∆t from a training

dataset with a weighted voting. Given a set of detections DT1
and corresponding ground truth (GT) target annotations, we

first assign the GT target id to each detections. For each de-

tection di, we measure the overlap with all the GT boxes in

ti. If the best overlap oi is larger than 0.5, the correspond-

ing target id (idi) is assigned. Otherwise, −1 is assigned.

For all detections that has idi ≥ 0 (positive detections), we

collect a set of detections P∆t
i = {dj ∈ D

T
1 |tj − ti = ∆t}.

For each pair, we compute the margin mij as follows: if idi
and idj are identical, mij = (oi − 0.5) · (oj − 0.5). Other-

wise, mij = −(oi − 0.5) · (oj − 0.5). Intuitively, mij shall

have a positive value if the two detections are from the same

target, while mij will have a negative value, if the di and dj
are from different targets. The magnitude is weighted by

the localization accuracy. Given all the pairs and margins,

we learn the model w∆t as follows:

w∆t =

∑
{i∈D

T
1 |idi≥0}

∑
j∈P∆t

i
mij(ρ

′(di, dj) + ρ′(dj , di))
∑

{i∈D
T
1 |idi≥0}

∑
j∈P∆t

i
|mij |(ρ′(di, dj) + ρ′(dj , di))

(1)

where the division is performed element-wise. The algo-

rithm computes a weighted average with a sign over all

the ALFD patterns, where the weights are determined by

the overlap between targets and detections. Intuitively, the

ALFD pattern between detections that matches well with

GT contributes more on the model parameters. The ad-

vantage of the weighted voting method is that each ele-

ment in w∆t are bounded in [−1, 1], thus the ALFD metric,

aA(di, dj), is also bounded by [−1, 1] since ||ρ(di, dj)||1 ≤
1. We learn w∆t using the KITTI 0000 sequence and kept

the same parameter throughout all the experiments.

3.4. Properties

In this section, we discuss the properties of ALFD affin-

ity metric aA(di, dj). Firstly, unlike appearance or spatial

metrics, ALFD implicitly exploit the information in all the

images between ti and tj through IPTs. Secondly, thanks

to the collective nature of ALFD design, it provides strong

affinity metric over arbitrary length of time. We observe a

significant benefit over the appearance or spatial metric es-

pecially over a long temporal distance (see Sec. 5.1 for the

analysis). Thirdly, it is generally applicable to any scenar-

ios (either static or moving camera) and for any object types

(person or car). One disadvantage of the ALFD is that it

may become unreliable when there is an occlusion. When

an occlusion happens to a target, the IPTs initiated from the

target tend to adhere to the occluder. It motivates us to com-

bine target dynamics information discussed in Sec. 4.4.1.

4. Near Online Multi-target Tracking (NOMT)

We employ a near-online multi-target tracking frame-

work that updates and outputs targets At in each time frame

considering inputs in a temporal window [t−τ, t]. We im-

plement the NOMT algorithm with a hypothesis generation

and selection scheme. For the convenience of discussion,

we define clean targets A∗t−1 = {A∗t−1
1 , A∗t−1

2 , ...} that ex-

clude all the associated detections in [t−τ, t−1]. Given a set

of detections in [t−τ, t] and clean targets A∗t−1, we generate
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multiple target hypotheses Ht
m = {ø, Ht

m,2, H
t
m,3...} for

each target A∗t−1
m as well as newly entering targets, where

ø (empty hypothesis) represents the termination of the tar-

get and each Ht
m,k indicates a set of candidate detections in

[t−τ, t] that can be associated to a target (Sec. 4.2). Each

Ht
m,k may contain 0 to τ detections (at one time frame,

there can be 0 or 1 detection). Given the set of hypothe-

ses for all the existing and new targets, the algorithm finds

the most consistent set of hypotheses (MAP) for all the tar-

gets (one for each) using a graphical model (sec. 4.3). As

the key characteristic, our algorithm is able to fix any asso-

ciation error (for the detections within the temporal window

[t−τ, t] ) made in the previous time frames.

4.1. Model Representation

Before going into the details of each step, we dis-

cuss our underlying model representation. The model is

formulated as an energy minimization framework; x̂ =
argminxE(A∗t−1,Ht(x),Dt

t−τ , V
t
1 ), where x is an integer

state vector indicating which hypothesis is chosen for a

corresponding target, H
t is the set of all the hypotheses

{Ht
1, H

t
2, ...}, and H

t(x) is a set of selected hypothesis

{Ht
1,x1

, Ht
2,x2

, ...}. Solving the optimization, the updated

targets At can be uniquely identified by augmenting A
∗t−1

with the selected hypothesis Ht(x̂). Hereafter, we drop V t1
and D

t
t−τ to avoid clutters in the equations. The energy is

defined as follows:

E(A
∗t−1

,H
t
(x)) =

∑

m

Ψ(A
∗t−1
m , H

t
m,xm

)+
∑

m,l

Φ(H
t
m,xm

, H
t
l,xl

) (2)

where Ψ(·) encodes individual target’s motion, appearance,

and ALFD metric consistency, and Φ(·) represent an exclu-

sive relationship between different targets (e.g. no two tar-

gets share the same detection). If there are hypotheses for

newly entering targets, we define the corresponding target

as an empty set, A∗t−1
m = ø.

Single Target Consistency

The potential measures the compatibility of a hypothe-

sis Ht
m,xm

to a target A∗t−1
m . Mathematically, this can be

decomposed into unary, pairwise and high order terms as
follows:

Ψ(A
∗t−1
m ,H

t
m,xm

) =
∑

i∈Ht
m,xm

ψu(A
∗t−1
m , di)

+
∑

(i,j)∈Ht
m,xm

ψp(di, dj) + ψh(A
∗t−1
m , H

t
m,xm

) (3)

ψu encodes the compatibility of each detection di in the

target hypothesis Ht
m,xm

using the ALFD affinity metric

and Target Dynamics feature (Sec. 4.4.1). ψp measures

the pairwise compatibility (self-consistency of the hypothe-

sis) between detections withinHt
m,xm

(Sec. 4.4.2) using the

ALFD metric. Finally, ψh implements a long-term smooth-

ness constraint and appearance consistency (Sec. 4.4.3).

Mutual Exclusion

This potential penalizes choosing two targets with large

overlap in the image plane (repulsive force) as well as dupli-

cate assignments of a detection. The potential can be writ-

ten as follows:

Φ(H
t
m,xm

, H
t
l,xl

) =

t∑

f=t−τ

α · o
2
(d(H

t
m,xm

, f), d(H
t
l,xl

, f))

+ β · I(d(H
t
m,xm

, f), d(H
t
l,xl

, f)) (4)

where d(Ht
m,xm

, f) gives the associated detection of

Ht
m,xm

at time f (if none, ø is returned), o2(di, dj) =
2 ∗ IoU(di, dj)

2, and I(di, dj) is an indicator function.

The former penalizes having too much overlap between hy-

potheses and the later penalizes duplicate assignments of

detections. We use α = 0.5 and β = 100 (large enough to

avoid duplicate assignments).

4.2. Hypothesis Generation

Direct optimization over the aforementioned objective

function (eq. 2) is infeasible since the space of Ht is huge in

practice. To cope with the challenge, we first propose a set

of candidate hypotheses Hm for each target independently

(Fig. 2(b)) and find a coherent solution (MAP) using a CRF

inference algorithm (sec. 4.3). As all the subsequent steps

depend on the generated hypotheses, it is critical to have a

comprehensive set of target hypotheses. We generates the

hypotheses of existing and new targets using tracklets. No-

tice that following steps could be done in parallel since we

generate the hypotheses set per target independently.

Tracklet Generation

For all the confident detections (∀di ∈ D
t
t−τ , s.t. si >

0), we build a tracklet using the ALFD metric aA. Starting

from one detection tracklet Ti = {di}, we grow the tracklet

by greedily adding the best matching detection dk such that

k = argmaxk∈Dt

t−τ
\Ti

maxj∈Ti
aA(dj , dk), where D

t
t−τ\Ti

is the set of detections in [t−τ, t] excluding the frames al-

ready included in Ti. If the best ALFD metric is lower than

0.4 or Ti is full (has τ number of detections), the iteration is

terminated. In addition, we also extracts the residual detec-

tions from each At−1m in [t−τ, t] to obtain additional tracklets

(i.e. ∀m,At−1m \A∗t−1
m ). Since there can be identical track-

lets, we keep only unique tracklets in the output set T.

Hypotheses for Existing Targets

We generate a set of target hypotheses Ht
m for each ex-

isting target A∗t−1
m using the tracklets T. In order to avoid

having unnecessarily large number of hypotheses, we em-

ploy a gating strategy. For each target A∗t−1
m , we obtain a

target predictor using the least square algorithm with poly-

nomial function [26]. We vary the order of the polynomial

depending on the dataset (1 for MOT and 2 for KITTI). If

there is an overlap (IoU) larger than a certain threshold be-

tween the prediction and the detections in the tracklet Ti at
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any frame in [t−τ, t], we add Ti to the hypotheses setHt
m. In

practice, we use a conservative threshold 0.1 to have a rich

set of hypotheses. Too old targets (having no associated de-

tection in [t−τ−Tactive, t]) are ignored to avoid unnecessary

computational burden. We use Tactive = 1 sec.

New Target Hypotheses

Since new targets can enter the scene at any time and at

any location, it is desirable to automatically identify new

targets. Our algorithm can naturally identify the new tar-

gets by treating any tracklet in the set T as a potential new

target. We use a non-maximum suppression on tracklets to

avoid having duplicate new targets. For each tracklet Ti,
we simply add an empty target A∗t−1

m = ø to A
∗t−1 with an

associated hypotheses set Ht
m = {ø, Ti}.

4.3. Inference with Dynamic Graphical Model

Once we have all the hypotheses for all the new and

existing targets, the problem (eq. 2) can be formulated as

an inference problem with an undirected graphical model,

where one node represents a target and the states are hy-

pothesis indices as shown in Fig. 2 (c). The main challenges

in this problem are: 1) there may exist loops in the graphical

model representation and 2) the structure of graph is differ-

ent depending on the hypotheses at each circumstance. In

order to obtain the exact solution efficiently, we first analyze

the structure of the graph on the fly and apply appropriate

inference algorithms based on the structure analysis.

Given the graphical model, we find independent sub-

graphs (shown as dashed boxes in Fig. 2 (c)) using con-

nected component analysis [18] and perform individual in-

ference algorithm per each subgraph in parallel. If a sub-

graph is composed of more than one node, we use junction-

tree algorithm [23, 28] to obtain the solution for correspond-

ing subgraph. Otherwise, we choose the best hypothesis for

the target. Once the states x are found, we can uniquely

identify the new set of targets by augmenting A
∗t−1 with

H
t(x): A∗t−1 +H

t(x) → A
t. This process allows us to ad-

just any associations of At−1 in [t−τ, t] (i.e. addition, dele-

tion, replacement, or no modification).

4.4. Model Details

4.4.1 Unary potential

As discussed in the previous sections, we utilize the ALFD

metric as the main affinity metric to compare detections.

The unary potential for each detection in the hypothesis is

measured by:

µA(A∗t−1
m , di) = −

∑

∆t∈N

aA(d(A∗t−1
m , ti −∆t), di) (5)

where N is a predefined set of neighbor frame distances

and d(A∗t−1
m , ti) gives the associated detection of A∗t−1

m at

ti. Although we can define an arbitrarily large set of N , we

choose N = {1, 2, 5, 10, 20} for computational efficiency

while modeling long term affinity measures.

Although ALFD metric provides very strong informa-

tion in most of the cases, there are few failure cases includ-

ing occlusions, erroneous IPTs, etc. To complement such

cases, we design an additional Target Dynamics (TD) fea-

ture µT (A
∗t−1
m , di). Using the same polynomial least square

predictor discussed in Sec. 4.2, we define the feature as fol-

lows:

µT (A∗t−1
m , di) =

{

∞, if o2(p(A∗t−1
m , ti), di) < 0.5

−ηti−f(A∗t−1
m )o2(p(A∗t−1

m , ti), di), otherwise

(6)

where η is a decay factor (0.98) that discounts long term

prediction, f(A∗t−1
m ) denotes the last associated frame of

A∗t−1
m , o2 represents IoU2 discussed in the Sec. 4.1, and p is

the polynomial least square predictor described in Sec. 4.2.

Using the two measures, we define the unary potential

ψu(A
∗t−1
m , di) as:

ψu(A
∗t−1
m , di) = min(µA(A∗t−1

m , di), µT (A∗t−1
m , di))− si (7)

where si represents the detection score of di. The min op-

erator enables us to utilize the ALFD metric in most cases,

but activate the TD metric only when it is very confident

(more than 0.5 overlap between the prediction and the de-

tection). If A∗t−1
m is empty, the potential becomes −si.

4.4.2 Pairwise potential

The pairwise potential ψp(·) is solely defined by the ALFD
metric. Similarly to the unary potential, we define the pair-
wise relationship between detections in Ht

m,xm
,

ψp(di, dj) =

{

−aA(di, dj), if |di − dj | ∈ N
0, otherwise

(8)

It measures the self-consistency of a hypothesis Ht
m,xm

.

4.4.3 High-order potential

We incorporate a high-order potential to regularize the tar-

get association process with a physical feasibility and ap-

pearance similarity. Firstly, inspired by [3, 31], we im-

plement the physical feasibility by penalizing the hypothe-

ses that present an abrupt motion. Secondly, we encodes

long term appearance similarity between all the detections

in A∗t−1
m and Ht

m,xm
similarly to [31]. The intuition is en-

coded by the following potential:

ψh(A
∗t−1
m , H

t
m,xm

) = γ ·
∑

i∈Ht
m,xm

ξ(p(A
∗t−1
m ∪H

t
m,xm

, ti), di)

+ ǫ ·
∑

(i,j)∈A
∗t−1
m ∪Ht

m,xm

θ −K(di, dj) (9)

where γ, ǫ, θ are scalar parameters, ξ(a, b) measures the

sum of squared distances in (x, y, height) of the two boxes,
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KITTI 0001: Cars, Mobile camera PETS09-S2L1: Pedestrians, Static camera

Metric △t : 1 △t : 5 △t : 10 △t : 20 △t : 1 △t : 5 △t : 10 △t : 20
ALFD 0.91 0.84 0.80 0.71 0.88 0.83 0.78 0.68

NDist2 0.81 0.32 0.15 0.06 0.85 0.67 0.55 0.41

HistIK 0.81 0.62 0.51 0.38 0.76 0.65 0.60 0.51

Table 1. AUC of affinity metrics for varying △t. Notice that ALFD

provides a robust affinity metric even at 20 frames distance. The

results verify that ALFD provides stable affinity measure regard-

less of object type or the camera motion.

that is normalized by the mean height of p in [t−τ, t], and

K(di, dj) represents the intersection kernel for color his-

tograms associated with the detections. We use a pyra-

mid of LAB color histogram where the first layer is the

full box and the second layer is 3 × 3 grids. Only the A

and B channels are used for the histogram with 4 bins per

each channel (resulting in 4 × 4 × (1 + 9) bins). We use

(γ, ǫ, θ) = (20, 0.4, 0.8) in practice.

5. Experimental Evaluation

In order to evaluate the proposed algorithm, we use the

KITTI object tracking benchmark [16] and MOT challenge

dataset [2]. KITTI tracking benchmark is composed of

about 19, 000 frames (∼ 32 minutes). The dataset is com-

posed of 21 training and 29 testing video sequences that are

recorded using cameras mounted on top of a moving vehi-

cle. Each video sequence has a variable number of frames

from 78 to 1176 frames having a variable number of tar-

get objects (Car, Pedestrian, and Cyclist). The videos are

recorded at 10 FPS. The dataset is very challenging since

1) the scenes are crowded (occlusion and clutter), 2) the

camera is not stationary, and 3) target objects appears in

arbitrary location with variable sizes. Many conventional

assumptions/techniques adopted in multiple target tracking

with a surveillance camera is not applicable in this case

(e.g. fixed entering/exiting location, background subtrac-

tion, etc). MOT challenge is composed of 11, 286 frames

(∼ 16.5 minutes) with varying FPS. The dataset is com-

posed of 11 training and 11 testing video sequences. Some

of the videos are recorded using mobile platform and the

others are from surveillance videos. All the sequences con-

tain only Pedestrians. As it is composed of videos with var-

ious configuration, tracking algorithms that are particularly

tuned for a specific scenario would not work well in general.

For the evaluation, we adopt the widely used CLEAR MOT

tracking metrics [21]. For a fair comparison to the other

methods, we use the reference object detections provided

by the both datasets.

5.1. ALFD Analysis

We first run an ablative analysis on our ALFD affin-

ity metric. We choose two sequences, KITTI’s 0001 and

MOT’s PETS09-S2L1 both from the training sets, for the

analysis. Given all the detections and the ground truth an-

notations, we first find the label association between detec-

tions and annotations. For each detection, we assign ground

Det. Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ IDS ↓ FRG ↓

Car Tracking Benchmark

DPMF [30] [13] Batch 36.62 % 78.49 % 11.13 % 39.18 % 2738 3240

TBD [15] [13] Batch 52.44 % 78.47 % 13.87 % 34.30 % 33 538

CEM [27] [13] Batch 48.23 % 77.26 % 14.48 % 33.99 % 125 398

RMOT [36] [13] Online 49.87 % 75.33 % 15.24 % 33.54 % 51 385

HM [13] Online 58.30 % 78.79 % 26.98 % 30.18 % 28 251

NOMT [13] Online 63.27 % 78.32 % 31.55 % 27.59 % 13 155

RMOT [36] [34] Online 60.46 % 75.57 % 26.98 % 11.13 % 216 742

HM [34] Online 69.86 % 80.10 % 38.72 % 15.09 % 109 372

NOMT [34] Online 72.62 % 79.55 % 43.14 % 14.48 % 38 227

Pedestrian Tracking Benchmark

CEM [27] [13] Batch 18.18 % 68.48 % 7.90 % 52.92 % 96 610

RMOT [36] [13] Online 25.47 % 68.06 % 9.97 % 47.42 % 81 692

HM [13] Online 17.26 % 67.99 % 11.34 % 51.55 % 73 743

NOMT [13] Online 25.55 % 67.75 % 14.43 % 42.61 % 34 800

RMOT [36] [34] Online 36.42 % 71.02 % 16.84 % 41.24 % 156 760

HM [34] Online 31.43 % 71.14 % 17.18 % 42.27 % 186 870

NOMT [34] Online 38.98 % 71.45 % 23.37 % 34.71 % 63 672

Table 2. Multiple Target tracking accuracy for KITTI

Car/Pedestrian tracking benchmark. ↑ represents that high

numbers are better for the metric and ↓ means the opposite. The

best numbers in each column are bold-faced. We use τ = 10 for

NOMT and NOMT+[34]. Numbers are updated.

truth id if there is larger than 0.5 overlap. We collect all

possible pairs of detections in 1, 5, 10, 20 frame distance

(∆t), to obtain the positive and negative pairs. As the base-

line affinity measures, we use the L2 distance between bot-

tom center of the detections that is normalized by the mean

height of the two (NDist2) and the intersection kernel be-

tween the color histograms of the two (HistIK). Table. 1

shows the Area Under Curve (AUC) of each affinity metric
2. We observe that ALFD affinity metric performs the best

in all temporal distance regardless of the camera configu-

ration and object type. As the temporal distance increases,

the other metrics become quickly unreliable as expected,

whereas our ALFD metric still provides a strong cue to

compare different detections.

5.2. KITTI Testing Benchmark Evaluation

Table. 2 summarizes the evaluation accuracy of our

method (NOMT) and the other state-of-the-art algorithms

on the whole 28 test video sequences3. We also imple-

mented an online tracking algorithm with the Hungarian

method [24] (HM) using our unary match function. Any

match cost larger than −0.5 is set to be an invalid match. In

following evaluations, we set the temporal window τ = 10
and filter out targets that either have only one detection or

a median detection score lower than 0. We use the Kalman

Filter [35] to obtain continuous trajectories out of discrete

detection sets A. Since the KITTI evaluation system does

not provide results on Cyclist category (due to lack of suf-

ficient data), we report the accuracy of Car and Pedestrian

categories. As for the detection inputs, we use two sets of

reference detections ([13] and [34]) available at KITTI [1].

As shown in the table, we observe that our algorithm

(NOMT) outperforms the other state-of-the-art methods

2Corresponding ROC curves are available at the supplemental material.
3Full analysis including detection measures and other methods is at [1].
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Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ IDS ↓ FRG ↓

Pedestrian Tracking Benchmark

DP [30] Batch 14.5 % 70.8 % 6.0 % 40.8 % 4,537 3,090

TBD [15] Batch 15.9 % 70.9 % 6.4 % 47.9 % 1,939 1,963

RMOT [36] Online 18.6 % 69.6 % 5.3 % 53.3 % 684 1,282

CEM [27] Batch 19.3 % 70.7 % 8.5 % 46.5 % 813 1,023

HM Online 26.7 % 71.5 % 11.2 % 47.9 % 669 916

NOMT Online 33.7 % 71.9 % 12.2 % 44.0 % 442 823

Table 3. Multiple Target tracking accuracy for MOT Challenge.

in most of the metrics with significant margins. Our

method produces much larger numbers of mostly tracked

targets (MT) in both Car and Pedestrian experiments with

smaller numbers of mostly lost targets (ML). This is thanks

to the highly accurate identity maintenance capability of

our algorithm demonstrated in the low number of identity

switch (IDS) and fragmentation (FRG). In turn, our method

achieves highest MOTA compared to other state-of-the-arts

(> 10% for Car and > 8% for Pedestrian), which sum-

marize all aspects of tracking evaluation. Our own HM

baseline also performs better than the other methods, which

demonstrates the robustness of ALFD metric. However, due

to the nature of pure online association and lack of high or-

der potential, it ends up missing more targets as shown in

the MT and ML measures.

5.3. MOT Challenge Evaluation

Table. 3 summarizes the evaluation accuracy of our

method (NOMT) and the other state-of-the-art algorithms

on the MOT test video sequences4. The website provides a

set of reference detections obtained using [9]. Similarly to

the KITTI experiment, we observe that our algorithm out-

performs the other methods with significant margins. Our

method achieves the lowest identity switch and fragmenta-

tion while having more targets tracked (high MT and low

ML). In turn, our method records the highest MOTA com-

pared to the other state-of-the-arts with a significant margin

(> 14%). The two experiments demonstrate that our ALFD

metric and NOMT algorithm is generally applicable to any

application scenario. Fig. 4 shows some qualitative exam-

ples of our results.

5.4. Timing Analysis

In order to understand the timeliness of the NOMT

method, we measure the latency by computing the differ-

ence between detection time (ti of di in A
T ) and the last

association time. The last association time is defined as: if

a detection di is newly added to a target Atm or replace any

other detection dj (e.g. ti = tj) in At−1
m at t, t is recorded

as the last association time for di. If di was in the At−1
m , no

change is made to the last association time of di. The last

association time tells us when the algorithm first recognizes

the di as a part of ATm (the final trajectory output for the

target m). The mean and standard deviation are 0.59±1.75
and 0.66± 1.87 with [34] for the KITTI test set (84.7% and

4Full analysis including detection measures and other methods is at [2].

AVG-TownCentre @ 237 TUD-Crossing @ 70 PETS09-S2L2 @ 140

KITTI Train 0001 @ 225 KITTI Train 0017 @ 34

KITTI Test 0007 @ 78 KITTI Test 0016 @ 340

Figure 4. Qualitative examples of the tracking results. We show

the bounding boxes together with the past trajectories (last 30 and

10 frames for MOT and KITTI, respectively). The color of the

boxes and trajectories represents the identity of the targets. Notice

that our method can generate long trajectories with consistent IDs

in challenging situations, such as occlusion, fast motion, etc.

Dataset FPS IPT CHist Hypos Infer Total

KITTI (11,095) 10.27 644.2 238.8 236.0 15.6 1,080.2

KITTI+[34] (11,095) 10.15 615.6 161.5 144.9 40.3 1,092.5

MOT (5,783) 11.5 323.4 92.7 62.1 19.6 502.5

Table 4. Computation time on KITTI and MOT test datasets. The

total number of images is shown in parentheses. We report the

average FPS (images/total) and the time (seconds) spent in IPT

computation (IPT), Color Histogram extraction (CHist), Hypothe-

sis generation (Hypos) that includes all the potential computations,

and the CRF inference (Infer). Total time includes file IO (reading

images). The main bottleneck is the optical flow computation in

IPT module, that can be readily improved using a GPU.

83.9% with no latency) and 0.87 ± 2.04 for the MOT test

set (77.6% with no latency). It shows that NOMT is indeed

a near online method.

Our algorithm is not only highly accurate, but also

very efficient. Leveraging on the parallel computation, we

achieve a real-time efficiency (∼ 10FPS) using a 2.5GHz

CPU with 16 cores. Table. 4 summarizes the time spent in

each computational module.

6. Conclusion

In this paper, we propose a novel Aggregated Local Flow

Descriptor that enables us to accurately measure the affin-

ity between a pair of detections and a Near Online Muti-

target Tracking that takes the advantages of both the pure

online and global tracking algorithms. Our controlled ex-

periment demonstrates that ALFD based affinity metric is

significantly better than other conventional affinity metrics.

Equipped with ALFD, our NOMT algorithm generates sig-

nificantly better tracking results on two challenging large-

scale datasets. In addition, our method runs in real-time

that enables us to apply it to various applications including

autonomous driving, real-time surveillance, etc.
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