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Abstract

The goal of this paper is to perform 3D object detec-

tion from a single monocular image in the domain of au-

tonomous driving. Our method first aims to generate a

set of candidate class-specific object proposals, which are

then run through a standard CNN pipeline to obtain high-

quality object detections. The focus of this paper is on

proposal generation. In particular, we propose an energy

minimization approach that places object candidates in 3D

using the fact that objects should be on the ground-plane.

We then score each candidate box projected to the image

plane via several intuitive potentials encoding semantic seg-

mentation, contextual information, size and location pri-

ors and typical object shape. Our experimental evaluation

demonstrates that our object proposal generation approach

significantly outperforms all monocular approaches, and

achieves the best detection performance on the challeng-

ing KITTI benchmark, among published monocular com-

petitors.

1. Introduction

In recent years, autonomous driving has been a focus of

attention of both industry as well as the research commu-

nity. Most initial efforts rely on expensive LIDAR systems,

such as the Velodyne, and hand-annotated maps of the en-

vironment. In contrast, recent efforts try to replace the LI-

DAR with cheap on-board cameras, which are readily avail-

able in most modern cars. This is an exciting time for the

vision community, as this application domain provides us

with many interesting challenges.

The focus of this paper is on high-performance 2D and

3D object detection from monocular imagery in the con-

text of autonomous driving. Most of the recent object de-

tection pipelines [19, 20] typically proceed by generating a

diverse set of object proposals that have a high recall and

are relatively fast to compute [45, 2]. By doing this, com-

putationally more intense classifiers such as CNNs [28, 42]

can be devoted to a smaller subset of promising image re-

gions, avoiding computation on a large set of futile candi-

dates. Our paper follows this line of work.

Different types of object proposal methods have been

developed in the past few years. A common approach

is to over-segment the image into superpixels and group

these using several similarity measures [45, 2]. Approaches

that efficiently explore an exhaustive set of windows using

simple “objectness” features [1, 11], or contour informa-

tion [55] have also been proposed. The most recent line

of work aims to learn how to propose promising object

candidates using either ensembles of binary segmentation

models [27], parametric energies [29] or window classifiers

based on CNN features [18].

These proposal generation approaches have been shown

to be very effective in the context of the PASCAL VOC

challenge, which require a rather loose notion of localiza-

tion, i.e., a detection is said to be correct if it overlaps

more than 50% with the ground truth. In the context of au-

tonomous driving, however, a much more strict overlap is

required, in order to provide a more accurate estimate of the

distance from the ego-car to the potential obstacles. As a

consequence, popular approaches, such as R-CNN [20] fall

significantly behind the competitors on autonomous driv-

ing benchmarks such as KITTI [16]. The current leader on

KITTI is Chen et al. [10], which exploits stereo imagery to

create accurate 3D proposals. However, most cars are cur-

rently equipped with a single camera, and thus monocular

object detection is of crucial importance.

Inspired by this approach, this paper proposes a method

that learns to generate class-specific 3D object proposals

with very high recall by exploiting contextual models as

well as semantics. These proposals are generated by ex-

haustively placing 3D bounding boxes on the ground-plane

and scoring them via simple and efficiently computable im-

age features. In particular, we use semantic and object

instance segmentation, context, as well as shape features

and location priors to score our boxes. We learn per-class

weights for these features using S-SVM [24], adapting to

each individual object class. The top object candidates are

then scored with a CNN, resulting in the final set of detec-
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Figure 1: Overview of our approach: We sample candidate bounding boxes with typical physical sizes in the 3D space by assuming a

prior on the ground-plane. We then project the boxes to the image plane, thus avoiding multi-scale search in the image. We score candidate

boxes by exploiting multiple features: class semantic, instance semantic, contour, object shape, context, and location prior. A final set of

object proposals is obtained after non-maximum suppression.

tions. Our experiments show that our approach is able to

perform really well on KITTI, outperforming all published

monocular object detectors and being almost on par with

the leader [10], which exploits stereo imagery.

2. Related Work

Our work is related to methods for object proposal gen-

eration, as well as monocular 3D object detection. We will

mainly focus our literature review on the domain of au-

tonomous driving.

Significant progress in deep neural nets [28, 42] has

brought increased interest in methods for object proposal

generation since deep nets are typically computationally de-

manding, making sliding window challenging [20]. Most

of the existing work on proposal generation uses RGB [45,

55, 9, 2, 11, 29], RGB-D [4, 21, 31, 25], or video [35].

In RGB, most methods combine superpixels into larger re-

gions via several similarity functions using e.g. color and

texture [45, 2]. These approaches prune the exhaustive set

of windows down to about 2K proposals per image achiev-

ing almost perfect recall on PASCAL VOC [12]. [9] defines

parametric affinities between pixels and finds the regions

using parametric min-cut. The resulting regions are then

scored via simple features, and the top-ranked proposals are

used in recognition tasks [8, 15, 53]. Exhaustively sampled

boxes are scored using several “objectness” features in [1].

BING proposals [11] score boxes based on an object closure

measure as a proxy for “objectness”. Edgeboxes [55] score

an exhaustive set of windows based on contour information

inside and on the boundary of each window.

The most related approaches to ours are recent methods

that aim to learn how to propose objects. [29] learns para-

metric energies in order to propose multiple diverse regions.

In [27], an ensemble of figure-ground segmentation models

are learnt. Joint learning of the ensemble of local and global

binary CRFs enables the individual predictors to special-

ize in different ways. [26] learned how to place promising

object seeds and employ geodesic distance transform to ob-

tain candidate regions. Parallel to our work, [18] introduced

a method that generates object proposals by cascading the

layers of the convolutional neural network. The method is

efficient since it explores an exhaustive set of windows via

integral images over the CNN responses. Our approach also

exploits integral images to score the candidates, however,

in our work we exploit domain priors to place 3D bounding

boxes and score them with semantic features. We use pixel-

level class scores from the output layer of the grid CNN, as

well as contextual and shape features.

In RGB-D, [10] exploited stereo imagery to exhaustively

scored 3D bounding boxes using a conditional random field

with several depth-informed potentials. Our work also eval-

uates 3D bounding boxes, but uses semantic object and in-

stance segmentation and 3D priors to place proposals on

the ground plane. Our RGB potentials are partly inspired

by [15, 53] which exploits efficiently computed segmenta-

tion potentials for 2D object detection.

Our work is also related to detection approaches for au-

tonomous driving. [54] first detects a candidate set of ob-

jects via a poselet-like approach and then fits a deformable

wireframe model within the box. [38] extends DPM [13] to

3D by linking parts across different viewpoints, while [14]

extends DPM to reason about deformable 3D cuboids. [34]

uses an ensemble of models derived from visual and geo-

metrical clusters of object instances. Regionlets [32] pro-

poses boxes via Selective Search and re-localizes them us-

ing a top-down approach. [46] introduced a holistic model

that re-reasons about DPM object candidates via carto-

graphic priors. Recently proposed 3DVP [47] learns occlu-

sion patterns in order to significantly improve performance

of occluded cars on KITTI.

3. Monocular 3D Object Detection

In this paper, we present an approach to object detection,

which exploits segmentation, context as well as location pri-

ors to perform accurate 3D object detection. In particular,

we first make use of the ground plane in order to propose

objects that lie close to it. Since our input is a single monoc-

ular image, our ground-plane is assumed to be orthogonal to
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Figure 2: CNN architecture adopted from [10] used to score our

proposals for object detection and orientation estimation.

the image plane and a distance down from the camera, the

value of which we assume to be known from calibration.

Since this ground-plane may not reflect perfect reality in

each image, we do not force objects to lie on the ground, and

only encourage them to be close. The 3D object candidates

are then exhaustively scored in the image plane by utiliz-

ing class segmentation, instance level segmentation, shape,

contextual features and location priors. We refer the reader

to Fig. 1 for an illustration. The resulting 3D candidates

are then sorted according to their score, and only the most

promising ones (after non-maxima suppression) are further

scored via a Convolutional Neural Net (CNN). This results

in a fast and accurate approach to 3D detection.

3.1. Generating 3D Object Proposals

We represent each object with a 3D bounding box, y =
(x, y, z, θ, c, t), where (x, y, z) is the center of the 3D box,

θ denotes the azimuth angle and c ∈ C is the object class

(Cars, Pedestrians and Cyclists on KITTI). We represent

the size of the bounding box with a set of representative 3D

templates t, which are learnt from the training data. We

use 3 templates per class and two orientations θ ∈ {0, 90}.

We then define our scoring function by combining semantic

cues (both class and instance level segmentation), location

priors, context as well as shape:

E(x,y) =w
⊤
c,semφc,sem(x,y) +w

⊤
c,instφc,inst(x,y)+

w
⊤
c,contφc,cont(x,y) +w

⊤
c,locφc,loc(x,y)+

w
⊤
c,shapeφc,shape(x,y)

We next discuss each of these potentials in more detail.

Semantic segmentation: This potential takes as input a

pixelwise semantic segmentation containing multiple se-

mantic classes such as car, pedestrian, cyclist and road. We

incorporate two types of features encoding semantic seg-

mentation. The first feature encourages the presence of an

object inside the bounding box by counting the percentage

of pixels labeled as the relevant class:

φc,seg(x,y) =

∑
i∈Ω(y) Sc(i)

|Ω(y)|
,
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Figure 3: AP vs #proposals on Car for moderate setting.

with Ω(y) the set of pixels in the 2D box generated by pro-

jecting the 3D box y to the image plane, and Sc the seg-

mentation mask for class c. The second feature computes

the fraction of pixels that belong to classes other than the

object class

φc,non−seg,c′(x,y) =

∑
i∈Ω(y) Sc′(i)

|Ω(y)|
,

This feature is two dimensional, as one dimension contains
the road and the other aggregates all other classes (but the

class of the proposal). Hence this potential tries to minimize

the fraction of pixels inside the bounding box belonging to

other classes. Note that these features can be computed very

efficiently using as many integral images as classes. In this

paper we use [41, 52, 3] to compute the semantic segmen-

tation features. [41, 52] jointly learn the convolutional fea-

tures as well as the pairwise Gaussian MRF potentials to

smooth the output labeling. SegNet [3] performs seman-

tic labeling via a fully convolutional encoder-decoder. In

particular, we use the pre-trained model on PASCAL VOC

+ COCO from [52] for Car segmentation. To reduce dis-

crepancies of surrogate classes, we use the pre-trained Seg-

Net model from [3] for Pedestrian and Cyclist segmenta-

tion. Note that very few semantic annotations are available

for KITTI and thus we did not fine-tune their models. Addi-

tionally, we exploited the annotations in the road benchmark

of KITTI, and fine-tuned the network of [41] for road.

Shape: This feature captures the shape of the objects.

Specifically, we first compute the contours in the output of

the segmentation (instead of the original image). We then

create two grids for the 2D candidate box, one containing

only a single cell and one that has K × K cells. For each

cell, we count the number of contour pixels inside it. Over-

all, this gives us a (1 + K × K) feature vector across all

cells. This potential tries to place a bounding box tightly

around the object, encouraging the spatial distribution of

contours within its grid to match the expected shape of a

specific class. These features can be computed very effi-

ciently using an integral image (counting contour pixels).
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Instance Segmentation: Similar to [15, 53], we ex-

ploit instance level segmentation features, which score the

amount of segment inside the box and outside the box.

However, we simply choose the best segment for each

bounding box based on the IoU overlap, and not reason

about the segment ID at inference time. This speeds up

computation. This feature helps us to detect objects that are

occluded as they form different instances. Note that these

features can be very efficiently computed using as many

integral images as instances that compose the segmenta-

tion. To compute instance-level segmentation we exploit

the approach of [51, 50], which uses a CNN to create both

instance-level pixel labeling as well as ordering in depth.

We re-trained their model so that no overlap (not even in

terms of sequences) exist between our training and valida-

tion. Note that this approach is only available for Cars.

Context: This feature encodes the presence of contextual

labels, e.g. cars are on the road, and thus we can see road

below them. We use a rectangle below the 2D projection

of the 3D bounding box as the contextual region. We set

its height to 1/3 of the height of the box, and use the same

width, as in [33]. We then compute the semantic segmenta-

tion features in the contextual region. We refer the reader to

Fig. 1. for an illustration.

Location: This feature encodes a location prior of objects

in both birds-eye perspective as well as in the image plane.

We learn the prior using kernel density estimation (KDE)

with a fixed standard deviation of 4m for the 3D prior and 2

pixels for the image domain. The 3D prior is learned using

the 3D ground-truth bounding boxes available in [16]. We

visualize the prior in Fig. 1.

3.2. 3D Proposal Learning and Inference

We use exhaustive search as inference to create our can-

didate proposals. This can be done efficiently as all the fea-

tures can be computed with integral images. In particular,

it takes 1.8s in a single core, but inference can be trivially

parallelized to be real time. We learn the weights of the

model using structured SVM [44]. We use the parallel cut-

ting plane implementation of [40]. We use 3D Intersection-

over-Union (IoU) as our task loss.

3.3. CNN Scoring of Top Proposals

In this section, we describe how the top candidates (after

non-maxima suppression) are further scored via a CNN. We

employ the same network as in [10], which for complete-

ness we briefly describe here. The network is built using

the Fast R-CNN [19] implementation. It computes convo-

lutional features from the whole image and splits it into two

branches after the last convolutional layer, i.e., conv5. One

branch encodes features from the proposal regions while an-

other is specific to context regions, which are obtained by

enlarging the proposal regions by a factor of 1.5, follow-

ing [53]. Both branches are composed of a RoI pooling

layer and two fully-connected layers. RoIs are obtained by

projecting the proposals or context regions onto the conv5

feature maps. We obtain the final feature vectors by con-

catenating the output features from the two branches. The

network architecture is illustrated in Fig. 2.

We use a multi-task loss to jointly predict category la-

bels, bounding box offsets, and object orientation. For

background boxes, only the category label loss is employed.

We weight each loss equally, and define the category loss

as cross entropy, the orientation loss as a smooth ℓ1 and

the bounding box offset loss as a smooth ℓ1 loss over the

4 coordinates that parameterized the 2D bounding box, as

in [20].

3.4. Implementation Details

Sampling Strategy: We discretize the 3D space such that

the voxel size is 0.2m along each dimension. To reduce

the search space during inference in our proposal gener-

ation model, we place 3D candidate boxes on the ground

plane. As we only use one monocular image as input, we

cannot estimate an accurate road plane. Instead, as the cam-

era location is known in KITTI, we use a fixed ground plane

for all images with the normal of the plane facing up along

camera’s Y axis (assuming that the image plane is orthog-

onal to the ground plane), and the distance of the camera

from the plane is hcam = 1.65m. To be robust to ground

plane errors (e.g., if the road has a slope), we also sample

candidate boxes on additional planes obtained by deviating

the default plane by several offsets. In particular, we fix the

normal of the plane and set height to hcam = 1.65 + δ. We

set δ ∈ {0,±σ} for Car and δ ∈ {0,±σ ± 2σ} for Pedes-

trian and Cyclist, where σ is the MLE estimate of the stan-

dard deviation by assuming a Gaussian distribution of the

distance from the objects to the default ground plane. We

use more planes for Pedestrian and Cyclist as small objects

are more sensitive to errors. We further reduce the number

of sampled boxes by removing boxes inside which all pixels

were labeled as road, and those with very low prior proba-

bility of 3D location. This results in around 14K candidate

boxes per ground plane, template and per image. Our sam-

pling strategy reduces it to 28%, thus speeding up inference

significantly.

Network Setup: We use the VGG16 model from [42]

trained on ImageNet to initialize our network. We initialize

the two branches with the weights of the fully-connected

layers of VGG16. To handle particularly small objects in

KITTI images, we upscale the input image by a factor of

3.5 following [10], which was found to be crucial to achieve

very good performance. We employ a single scale for the

images during both training and testing. We use a batch size

of N = 1 for images and a batch size of R = 128 for pro-
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Figure 4: Proposal Recall vs #Candidates. We use an overlap threshold of 0.7 for Car, and 0.5 for Pedestrian and Cyclist. Methods that

use depth information are indicated in dashed lines. Note that the comparison to 3DOP [10] and MCG [2] is unfair as we use a monocular

image and they use a stereo pair.

posals. We run SGD with an initial learning rate of 0.001

for 30K iterations and then reduce it to 0.0001 for another

10K iterations.

4. Experimental Evaluation

We evaluate our approach on the challenging KITTI

dataset [16]. The KITTI object detection benchmark has

three classes: Car, Pedestrian, and Cyclist, with 7,481 train-

ing and 7,518 test images. Detection for each class is eval-

uated in three regimes: easy, moderate, hard, which are

defined according to the occlusion and truncation levels of

objects. We use the train/val split provided by [10] to evalu-

ate the performance of our class-dependent proposals. The

split ensures that images from the same sequence do not ex-

ist in both training and validation sets. We then evaluate our

full detection pipeline on the test set of KITTI. We refer the

reader to the supplementary material for many additional

results.

Metrics: We evaluate our class-dependent proposals us-

ing best achievable (oracle) recall following [22, 45]. Or-

acle recall computes the percentage of ground-truth ob-

jects covered by proposals with IoU overlap above a certain

threshold. We set the threshold to 70% for Car and 50%

for Pedestrian and Cyclist, following the KITTI setup. We

also report average recall (AR), which has been shown to be

highly correlated with detection performance. We also eval-

uate the whole pipeline of our 3D object detection model on

KITTI’s two tasks: object detection, and object detection

and orientation estimation. Following the standard KITTI

setup, we use the Average Precision (AP) metric for the

object detection task, and Average Orientation Similarity

(AOS) for object detection and orientation estimation task.

Baselines: We compare our proposal generation method

to several top-performing approaches on the validation set:

3DOP [10], MCG-D [21], MCG [2], Selective Search

(SS) [45], BING [11], and Edge Boxes (EB) [55]. Note

that 3DOP and MCG-D exploit depth information, while
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Figure 5: Recall vs IoU using 500 proposals. The number next to the labels indicates the average recall (AR). Note that 3DOP and

MCG-D exploit stereo imagery, while the remaining methods as well as our approach use a single monocular image.
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Recall vs #candidates at IoU threshold of 0.7, Recall vs IoU for 500 proposals. We start from the basic model (Loc), which only uses

location prior feature, and then gradually add other types of features: class semantics, context, shape, and instance semantics.

the remaining methods as well as our approach only use a

single RGB image. Note that all of the above approaches,

but 3DOP, are class independent (trained to detect any fore-

ground object), while we use class-specific weights as well

as semantic segmentation in our features.

Proposal Recall: We evaluate the oracle recall for the

generated proposals on the validation set. Fig. 4 shows re-

call as a function of the number of proposals. Our approach

achieves significantly higher recall than all baselines when

using less than 500 proposals on Car and Pedestrian. In
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Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

LSVM-MDPM-sv [17, 13] 68.02 56.48 44.18 47.74 39.36 35.95 35.04 27.50 26.21

SquaresICF [5] - - - 57.33 44.42 40.08 - - -

ACF-SC [6] 69.11 58.66 45.95 51.53 44.49 40.38 - - -

MDPM-un-BB [13] 71.19 62.16 48.43 - - - - - -

DPM-VOC+VP [38] 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

OC-DPM [37] 74.94 65.95 53.86 - - - - - -

SubCat [34] 84.14 75.46 59.71 54.67 42.34 37.95 - - -

DA-DPM [48] - - - 56.36 45.51 41.08 - - -

R-CNN [23] - - - 61.61 50.13 44.79 - - -

pAUCEnsT [36] - - - 65.26 54.49 48.60 51.62 38.03 33.38

FilteredICF [49] - - - 67.65 56.75 51.12 - - -

DeepParts [43] - - - 70.49 58.67 52.78 - - -

CompACT-Deep [7] - - - 70.69 58.74 52.71 - - -

3DVP [47] 87.46 75.77 65.38 - - - - - -

AOG [30] 84.80 75.94 60.70 - - - - - -

Regionlets [32] 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83

Faster R-CNN [39] 86.71 81.84 71.12 78.86 65.90 61.18 72.26 63.35 55.90

Ours 92.33 88.66 78.96 80.35 66.68 63.44 76.04 66.36 58.87

Table 1: Average Precision (AP) (in %) on the test set of the KITTI Object Detection Benchmark.

Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

AOG [30] 33.79 30.77 24.75 - - - - - -

LSVM-MDPM-sv [17, 13] 67.27 55.77 43.59 43.58 35.49 32.42 27.54 22.07 21.45

DPM-VOC+VP [38] 72.28 61.84 46.54 53.55 39.83 35.73 30.52 23.17 21.58

OC-DPM [37] 73.50 64.42 52.40 - - - - - -

SubCat [34] 83.41 74.42 58.83 44.32 34.18 30.76 - - -

3DVP [47] 86.92 74.59 64.11 - - - - - -

Ours 91.01 86.62 76.84 71.15 58.15 54.94 65.56 54.97 48.77

Table 2: AOS scores (in %) on the test set of KITTI’s Object Detection and Orientation Estimation Benchmark.

Metric Proposals Type
Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

AP

SS [45] Monocular 75.91 60.00 50.98 54.06 47.55 40.56 56.26 39.16 38.83

EB [55] Monocular 86.81 70.47 61.16 57.79 49.99 42.19 55.01 37.87 35.80

3DOP [10] Stereo 93.08 88.07 79.39 71.40 64.46 60.39 83.82 63.47 60.93

Ours Monocular 93.89 88.67 79.68 72.20 65.10 60.97 84.26 64.25 61.94

AOS

SS [45] Monocular 73.91 58.06 49.14 44.55 39.05 33.15 39.82 28.20 28.40

EB [55] Monocular 83.91 67.89 58.34 46.80 40.22 33.81 43.97 30.36 28.50

3DOP [10] Stereo 91.58 85.80 76.80 61.57 54.79 51.12 73.94 55.59 53.00

Ours Monocular 91.90 86.28 77.09 62.20 55.77 51.78 71.95 53.10 51.32

Table 3: Object detection and orientation estimation results on validation set of KITTI. We use 2000 proposals for all methods.

particular, our approach requires only 100 proposals for Car

and 300 proposals for Pedestrian to achieve 90% recall in

the easy regime. Note that the other 2D methods require or-

ders of magnitude more proposals to reach the same recall.

When using 2K proposals, we achieve recall on par with

the best 3D approach, 3DOP [10], while being more than

20% higher than other baselines. Note that the comparison

to 3DOP [10] and MCG [2] is unfair as we use a monoc-

ular image and they use depth information. We also show

recall as a function of the overlap threshold for top 500 pro-

posals in Fig. 5. Our approach outperforms the baselines

except for 3DOP (which uses stereo) across all IoU thresh-

olds. Compared with 3DOP, we get lower recall at high IoU

thresholds on Pedestrian and Cyclist.

Ablation Study: We study the effects of different features

on the object proposal recall in Fig. 6. It can be seen that

adding each potential improves performance, particularly at

the regime of fewer proposals. The instance semantic fea-

ture improves recall especially when using fewer proposals
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Figure 7: Qualitative examples of car detections results: (left) top 50 scoring proposals (color from blue to red indicates increasing

score), (middle) 2D detections, (right) 3D detections.

(e.g., < 300). Without the instance feature, we still achieve

90% recall using 1000 proposals. By removing both in-

stance and shape features, we would need twice the number

of proposals (i.e., 2000) to reach 90% recall.

Object Detection and Orientation Estimation: We use

the network described in Sec. 3.3 to score our proposals

for object detection. We test our full detection pipeline

on the KITTI test set. Results are reported and compared

with state-of-the-art monocular methods in Table 1 and Ta-

ble 2. Our approach significantly outperforms all published

monocular methods. In terms of AP, we outperform the

second best method Faster R-CNN [39] by a significant

margin of 7.84%, 2.26%, and 2.97% for Car, Pedestrian,

and Cyclist, respectively, in the hard regime. For orienta-

tion estimation, we achieve 12.73% AOS improvement over

3DVP [47] on Car in the hard regime.

Comparison with Baselines: As strong baselines, we

also use our CNN scoring on top of three other proposals

methods, 3DOP [10], EdgeBoxes (EB) [55], and Selective

Search (SS) [45], where we re-train the network accord-

ingly. Table 3 shows detection and orientation estimation

results on KITTI validation. We can see that our approach

outperforms Edge Boxes and Selective Search by around

20% in terms of AP and AOS, while being competitive with

the best method, 3DOP. Note that this comparison is not

fair as 3DOP uses stereo imagery, while we employ a sin-

gle monocular image. Nevertheless it is interesting to see

that we achieve similar performance. We also report AP as

a function of the number of proposals for Car in the mod-

erate setting, in Fig. 3. When using only 10 proposals per

image, our approach already achieves AP of 53.7%, while

3DOP is 35.7%. With more than 100 proposals, our AP is

almost the same as 3DOP. EdgeBoxes reaches its best per-

formance (78.7%) with 5000 proposals, while we need only

200 proposals to achieve AP of 80.6%.

Qualitative Results: Examples of our 3D detection re-

sults are in Fig. 7. Notably, our approach produces highly

accurate detections in 2D and 3D even for very small or oc-

cluded objects.

5. Conclusions

We have proposed an approach to monocular 3D object

detection, which generates a set of candidate class-specific

object proposals that are then run through a standard CNN

pipeline to obtain high-quality object detections. Towards

this goal, we have proposed an energy minimization ap-

proach that places object candidates in 3D using the fact

that objects should be on the ground-plane, and then scores

each candidate box via several intuitive potentials encoding

semantic segmentation, contextual information, size and lo-

cation priors and typical object shape. We have shown that

our object proposal generation approach significantly out-

performs all monocular approaches, and achieves the best

detection performance on the challenging KITTI bench-

mark.
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