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Abstract

We propose a novel directed graphical model for label propagation in lengthy and

complex video sequences. Given hand-labelled start and end frames of a video sequence,
a variational EM based inference strategy propagates either one of several class labels or
assigns an unknown class (void) label to each pixel in the video. These labels are used
to train a multi-class classifier. The pixel labels estimated by this classifier are injected
back into the Bayesian network for another iteration of label inference. The novel aspect
of this iterative scheme, as compared to a recent approaths|its ability to handle
occlusions. This is attributed to a hybrid of generative propagation and discriminative
classification in a pseudo time-symmetric video model. The end result is a conservative
labelling of the video; large parts of the static scene are labelled into known classes, and
a void label is assigned to moving objects and remaining parts of the static scene. These
labels can be used as ground truth data to learn the static parts of a scene from videos of
it or more generally for semantic video segmentation.
We demonstrate the efficacy of the proposed approach using extensive qualitative and
guantitative tests over six challenging sequences. We bring out the advantages and draw-
backs of our approach, both to encourage its repeatability and motivate future research
directions.

1 Introduction

Fast and efficient discriminative classifiers like Random Forests have shown promising
sults for video segmentatior2,[ 11]. However, training these classifiers require copious
quantities of labelled video data, which unfortunately is extremely strenuous to obtain
hand labelling. To reduce the burden of hand labelling, label propagation methods for se
supervised learning, likel],[13], exploit the structure in the distribution of data points to
infer unknown labels from the few labelled points.

Recently, [] proposed the problem of label propagation in video sequences for traini
multi-class classifiers designed for video segmentation. Given hand-labelled start and
frames of a video sequence, the goal is to propagate labels throughout the rest of the v
sequence. To this end][proposed a coupled Bayes net for joint modelling of the image se
guence and their pixel-wise labels. A simple variational EM strategy is employed to infer 1

(© 2010. The copyright of this document resides with its authors. BMVC 2010 doi:10.5244/C.24.27
It may be distributed unchanged freely in print or electronic forms.



2 BUDVYTIS et al: LABEL PROPAGATION

Occlusion-aware
labelling

(Classifier injection
off )

c) Proposed
Generative
Propagation
(PGP)

d) Proposed Hybrid " 1 - i) -1 T i Prolonged

Model (PHM) 3 1 ;4 H b Ll 5% : 1 occlusion-aware
P labelling
(Classifier injected)

Figure 1:A motivational illustration. The reader is encouraged to zoom-in to see the details.

most probable class label for the pixels in the video. This scheme provides high quality I
bels for 2-3 second videos. However, performance degrades significantly for greater lengt
as their model lacks a mechanism to tackle occlusions. Their algorithm is also afflicted b
atime-assymetnythat is, the inferred labels change if the video is time-reversed. In a bid to
address these drawbacks, our contribution towards label propagation in video sequences
as follows:

1. We propose a novel directed graphical model (Bayes net), which combines generatiy
propagation and discriminative learning to tackle occlusions/disocclusions and prope
gate labels in long~ 25s) and complex sequences.

2. We perform time-symmetric label propagation by modelling a “doubled” sequence:
the original sequence and its time-reversed version appended to it (s&®. Fig.

3. We empirically demonstrate that a classifier is more confident and accurate whe
trained with the propagated labels, as compared to training with only two hand-labelle
video frames, to support our proposed scheme.

Fig. Lillustrates the goals of the proposed scheme. Rows (a),(b) show samples from the pu
licly available CamVid driving sequence datas#tdnd their corresponding ground truth re-
spectively. Of these, only ground truth labels of frames 60 and 810 are used to initialise lab
propagation. Row (c) shows the propagated labels when the classifier injection is switche
"off" during inference (PGP). In contrast, when the injection is "on" distinctly more labels
are obtained (PHM in row (d)).

The remainder of the paper is organized as follows. We begin with a literature review ir
Section2. In Section3 we discuss the proposed model and inference strategy. We describ
the dataset, empirical parameter settings and the details of quantitative evaluation in Secti
4. We devote Sectioh to a comparative analysis of the results. We conclude in Se6tion

2 Literature review

A publicly available video labelling tool is LabelMe Vided7]. Here the user draws a
polygon around an object at the start, in some key frames and the end frame. This polygon
interpolated using object specific 2D or 3D velocity model on an ego-motion compensate
video. In contrast, we avoid any ego-motion estimation, place no assumptions on object(
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Figure 2: The model proposed irl] and the proposed hybrid model (PHM) for label propagation.
Shaded nodes represent observed/clamped variables. The Markov chains have time-reversed f
Int1:2n placed to get a pseudo time-symmetric video model. The order of message passing and tht
nail images of assymetrici[with no void labels) and pseudo-symmetric label propagation (PHM witt
increasing void labels towards the middle) are shown. The gray rectangle is parsfimegzy|ly; Y).

motion and provide pixel-wise labelling. SIFT-flow][is a recent method to transfer labels
to an image from a labelled set of similar images in a database. The labels are transferre
image matching in a SIFT descriptor space. The argument is that their approach is equive
to optic flow for non-sequential data. However, #sdemonstratedjeterministic optic flow
based label propagation is inferior to probabilistic patch based methods. In addition, o
flow based methods will be further challenged over lengthy sequences with occlusions.
In imageself-similaritybased models like the Jigsaw modg], [a Pott’'s model based prior
is imposed on mappings between the Jigsaw pixels and image pixels. Under the opti
mapping, the Jigsaw learns the repeated images structures (of arbitrary shape) in a s
images. Interestingly, a trained decision tree based classifier (based on patch mapping
used to prune down the search space of possible mappings. In principle, labelling the in
structures within the Jigsaw can transfer labels to the set of images. However, this invo
learning the correct Jigsaw size which capture image structures that are intuitive to la
Alternatively, one can learn the Jigsaw, and its labelling from the two hand-labelled €
frames. However, there is no mechanism to avoid erroneous labelling of objects not pre
in the hand-labelled frames. In comparison, our frame to frame generative model uses
pler patch matches between frames, and reserves the classifier for handling occlusions.
Badrinarayanaet al. [1] extend the static epitome model @f][to a time-series model for
video labelling. Their variational EM inference only captures "local" uncertainty in the Iz
bels due to messages from adjacent past and future frames. This results in an undesi
time-assymetrywhere reversing the order of frames would result in different labelling. Ur
derstandably, this inference strategy trades-off propagation of label uncertainties for redt
complexity of inference. In this paper, we show that the same inference strategy applie
our proposed model negates the causal effects afflicting their method.

As mentioned in the introduction, there is no mechanism in the scheni¢ fof [occlusion
handling. In our model, we invoke a discriminative classifier to "fill-in" labels for disoc
cludedstatic parts of the scenfor instance, labelling road segments previously occlude
by a car). Additionally, a "black-box" style treatment of classifiers in the Bayes net impli
that our model can support any canonical classifier. For the sake of empirical studies,
choose a Random Forest classifier used.ij §nd train it using probabilistic labels.
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3 Model

Our proposed Bayesian network model is shown in Riglongside the model proposed in
[1]. The elements of the proposed model are explained below.

Nodes:

1. lo;ny are the observed sequence of images. Imabes |2n_k}§gn+l are the sequence of

images in time reversed order (termedpasudmbservations). The order of message pass-

ing iterations are the same in both the models, but sequence “doubling” in our model leac

to occlusion aware label propagatiqisee thumbnail images in Fig.and Sec3.1).

2. Z is alatent colour imageconsisting of “overlapping latent colour image patches”,

Zy = {Zk,j}?:l, where | is the patch index into the set of patch@s As in [4], [1] we

first assume these patches to be mutually independent even though they share coordina

but then enforce agreement in the overlapping parts during inference by resorting to a Viter

type variational approximation. This technique allows us to lay down tractable conditiona

distributions (Egnl), and the inference (liné2 in algorithm1) allows us to implicitly re-

capture correlations between latent image patches.

3. Z% is alatent labelled imageonsisting of “overlapping latent labelled patcheg?, =

{Z }Q ;. Each pixeli in patchj, ZkJ i» Wherej(i) denotes coordinaierelative to the top-

left hand corner of patcly, is a multlnomlal random variable taking onelof- 1 mutually

exclusive values: a void (unknown class) label aridhown class labels. Label 1 is reserved

for void. Correlations between overlapping patches are capturedzas in

4. A¢ is an image sized two dimensional “grid”. At each coordinate of this grid is a set

of L+ 1 continuous non-negative real valued random variables which sum to unity. For in

stance, at coordinatewe havey ! Acy = 1.0.

5. Z¢ is a latent labelled image obtained as a result of feeding the observed ligtagsugh
"black box" classifier. Each p|xa§ on the gridV is an independent multinomial with

L 4+ 1 mutually exclusive states’ represents the internal parameters specific to the choser

classifier, for instance, the tree structure and split node functions in a random forest classifi

(seed).

6. Tx = {Tk i }Qil is the set of “patch mapping” variables which couple the top and bottom

Markov chams Arinstanceof Ty ; maps latentimage patdy  to an observed patdi_;, T

of the same size ifk_;. The same instance f ; also maps latent labelled pat@ toa

patchAy_ 1T of the same size on the grik_1. Ty j(i) denotes pixei in the patch mapped

to byTKJ-.

Edges:
1. The latent imagé&y is predicted from observed imagieas shown below.

Q
P(Z|lk-1,Tk) = I_U_| N (Zk,j(i);kal,Tk_’j(i)a(pkfl,Tk‘j(i)) : 1)
J

=1l€gj

where, indexj runs over all the (overlapping) latent patcfﬂis_ {ZkJ}j 1+ Z j) 1s pixel

i inside patchj at timek. Ty ;(i) indexes the pixel_y 7, (i) in lk-1. A4 () is a normallzed
Gaussian distribution ove ), with meanl, 1T an& varlanc«pk 17 () y (held constant
in our experiments, sed.

2. The observed imagg is “explained” by latent imagé&y as shown below.
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Algorithm 1: Proposed inference for label propagation.

Input: Image sequendg;, with user provided labels fdp andl,

Output: Labels for static parts of the scenelip_1

Initialization //  See [ 1] for initialization of Zy:n.

{lk= |2n,k}§gn+1; /I time-reversed sequence

Z8,,,=0;/l this improper initialization does not affect the iterations.
Z5,,Z3 are clamped to the end frame labgj; , 75, are clamped to start frame label;
Z§.,n 1 =01/l classifier injection is initially “off".

M= {mu = 33 }II1 . k=1:2n—landw eV

I Ao, An,Azn and Ty initialization

7 fork=0:2ndo

o W N R

8 p(Tk, j) Orect(j,30,40), whererect(j,w, h) represents uniform values over a rectangular window of dimension
w x h centered on patch
9 if k=0,n,2nthen
1.0 if pixel label=1 andl > 1,
10 Ayl =4 0.0 if pixel label# | andl > 1,
1.0/(L+1) if pixel label= 1 (void),
11 else
12 L Ay =1.0/(L+1),VI=1:L+1// “flat” distribution
/I Variational approx. - 'g’ function. A;=A for k=n.2n
13 Q(Zaon, Z8 0, Avon, Z§.n, Taoon) = TTRC1 A(T) 8 (2 — Z) 8 (28 — Z2) 8 (A — A 8(ZE — Z¢).
14 LabelPropagation// Note: our interest is in 280 1,25

15 for iter=1:M do
16 23, < InferLabels(  lo2n, Za:2n, 280y, Aoion, Z5.on, Tin, Mun-1) /I See alg. 2.
Z§._1,M1n-1 < LearnClassifier( lon.Z§,) Il Z§=Ao. See alg. 3 and the text in Sec.
31.

P(lkIZk)Zr\l/«/V |kv= szl W), 2
- e

wherely , denotes the intensity of pixelin the image sized gri¥l. j indexes patches A
which overlap pixel. i is the variance of the normalized Gaussian which is held consta
in our experiments (Sed). Note thatj(v) = j(i') wherei' is a coordinate in patchwhich
overlaps global coordinate

3. The latent labelled imag#f is predicted fronAk 1 as follows.
L+1 za

PZEIA 1, Th) = r!.e, TAC R o @

where the indices on the first two products are the same as il Eghe last term is the
discrete class probability distribution of the random vari:ﬂge(i) corresponding to pixal
in patchj.
4. A¢ is predicted fronzZ? andZ; as shown below.
r((XVO avl*
AZ3,Z8) = 4
p( ‘ K k) veV r(O‘\/.,l) : a’VL+1 r! ( )
which sets a Dirichlet prior on the (independent) paramgi@s}vey. I denotes the gamma
function with parameterss, = sz zﬁ X +z, +Aforl=1.L+1andao=
st.jov
zl”lloow Note thatj indexes patches iBZ which overlap pixel index in the image sized
gridV. Ny is the number of elements in the surh.is a real positive constant-E& 1.0) to
avoid infinities.
5. The “black-box” classifier output for imadgis defined as follows.
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L+1

PZGY) =[] r!m (I, Y) %K (5)

vev I=
where, class probabilities obg)};l m = 1.0, andv is a coordinate on th&g grid V.

3.1 Inference and Learning

Given{lo.2n, Ao, An, A2n}, We lower bound its log probability as shown below.

logp(lo:2n, Ao, An, Azn) Z/éq(Z1:2n,Zf;m,zf;m,Ao:m,Tl:m)><

P(Z1:2n, 25 o0y Z.n 1,020, Trezn, lo:n) ©)
q(zlia'hZ]a_:ZVZE:vaAOZZ%TlZZn) ’
whereq(.) is an auxiliary distribution. The form of this approximating distribution is:

log

2n
A(Z1:2n, Z8 o, Aron, Z5 o, Tron) = [19(M)d(z— Z)8(Z8 —Z8) 6 (A — A S (Zi — 7).
K=1
(7)

The above computationally tractable form allows us to approximate a posterior distributiol
over the mapping variables and a MAP estimate over the remaining ones. We estimate tt
distribution via the variational EM algorithm (V-EM) which aims to maximize the above
lower bound. The analytic expressions for this alternating scheme are shown ia.Aly.

the E-step we fix the latent variables and derive an approximate posterior over the mappin
and in the M-step the optimal values of the latent variables are computed using the fixe
point equations (Alg2) which depend on this approximate posterior.

Learning under our proposed model implies estimating the the classifier internal param
terY. In principle, the inferred values of the latent variaBfe,, are to be used as the "desired
output” while training a multi-class classifier (random forest) for the image sequgsce
However, due to the "explaining away" effect (sép fhe inferred estimates &.,,, remain
highly anti-correlated to the correspondid§,,, estimates, if the fixed point equations are
not lead to convergence in a bid to reduce computation. Instead of waiting until convergenc
we can speed up the learning process by using the estimafés, dh place of thez{.,,, esti-
mates. This can be justified by the fact that in our model, at convergence, the MAP estimat
of Z¢,, are seen to be a good approximation to the MAP estimat&$.gf Note that this
speed up hack is primarily necessitated due to the use of a factorial auxiliary distribution.

For further details of inference and learning, the reader is referred to Algsand3,
which are presented as pseudo-codes.

3.2 Discussions

The analysis of the proposed model under three different themes is provided below.

Void propagation for occlusion handling The M-step in algorithn® involves summing
over all the possible states of each mapping varidple This expense can be reduced by
approximatingo(Ti ;) by a delta distribution centered on the maximum probable mapping.
When the EM iterations are started from the end frame (backward message pass), the
step update equations fdg,, under this approximation, assigns a “flat” distribution to
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Algorithm 2: InferLabels()

Input: lo:n, Z1:n, 285, Ao:on, Z§ .o Trin
Output: Z2,,_4; the labels for statlc parts of the scendiifn_1

7
E-step// Do for k=1:2n.  q(Tj) O icj- (Zk,J(i)v|k—1.Tk_i(i)u¢k—1.Tk_j(i)) Nt Ei(IT)kIJ (i P(Tcj)
M-step // Do for k=2n—1:1 (backward pass), then for k=1:2n—1 (forward pass), with

k#n. W is the Digamma function.

Update for ZE_,(.) is same as in [ 1]

0Zg, =logAy, +2(J-2_J€ 31 AT 1OIA 17 s — V(& +200 +2)

a1 028y > 078, 1 =1 L Ll £,
kvl 0 otherwise

-

w N

5 Aﬁ_le(Zﬁ§_|+Zﬁfw+lfl)+Z > Z ATier11)ZE 1 iy |ead3tmkv\*# lel:L+1
Tet1, %=
L Tk+1](|)*"

Dl
0Z¢, = logAy ) —W(ZE, + 2y +4) +log (I, Y)
o 7{1 it 0z, > 028,V =1, L+11 £1,
710 otherwise
8 return ()

o

coordinatesy which are not involved in any mapping between time insténéd k + 1.
Consequentially, at these coordinates, pn?lkf’f§I are labelled void. The overall outcome is
propagation of void (uncertain) labels; in row (d) of Fig(PGP), as we move backwards in
time, newly appearing parts of the scene are labelled vadidis reduces erroneous labelling
by remaining conservative.

Comparison to the model in ] In thetime-assymetric modél] the mapping variables
Tk j are in thecausal directioni.e. latent patches id, are mapped to patcheslig ;. The
effect is that, the propagated “void” labels from the backward message pass are erronec
assigned 1 of known class labels in a subsequent forward message pass (s&d.Fi@.
negate these causal effects, we double the time-series by plas®agomobservations to get
“more symmetric mappings”. By this construction, the model includestekalmappings
(0:n) andanti-causalmappingsii+ 1 : 2n) to enable mor@seudo time-symmetiiicference
(see PHM in Fig2). Note that it is not equivalent to a fully symmetric model, hence we terr
it "pseudo-symmetric" model. However, the cost is doubled to 4 message passing iterat
per inference call.

Blackbox classifier training The M-step update for model parame¥éis shown in line

4 of Alg. 3. The RHS term can be cast as a sum of negative KL divergences as a funct
of Y and an independent entropy term. Therefore, the M-step simply updates a classif
internal parameters to reduce the total error over the training set (inferred labels). T
general argument leads us to treat the classifier as a “blackbox”.

4 Experimental design
We use the publicly available CamVid driving video datasgtfpr our experiments. We

chose seq05VD (30Hz) in this dataset and divided it into 6 sequences (Se€l)aklar
focus in this paper is on classes like roads, pavements, roadmarkings and others (10 cl
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Algorithm 3: LearnClassifier()
Input: lon, 25, 2§ = Z§

Output: Z§,,_;, Myn_1 whereMy = {my, }Z1andvv e V

1 Initialization

2 Pixels with label 1 (void) are considered “equi-probable” over the known classes
3 Remaining pixels have a label betweenl2+ 1 with probability 1

4 Blackbox classifier training

5 Y=argmax 30 o Yvev SH1Z8, logm (I, Y) // sum over L classes only
6 Myin 1 — EstimateLabelsfromClassifier( lom, V)

7 FilterLabels(  Flin1,1) {

g for k=1:n-1do

9 for veV do

10 if max class probabilityr,; > p then

11 Setpixy = &

12 Setzlf_w, =1,ifl’=1,else=0

else
L Set estimated distributiopiy to “flat”

BB e
o > w

Setz;,, =1

16 Myn-1 — Mg A
17 return Z§, 4, Nin1,Y=Y}/ Obtain  Z§ 15 1 =25 14,Mnian-1=n1a (time-reversal).

including void) relevant to learning the static parts in the driving scene. We merged gras
and tree classes, and chose a single sign class for different varieties of traffic signs. T
experimental details of various aspects of the proposed approach are listed below.

Labelling protocol We work with 320x 240 sized images. We set a difference of 750
frames between the start and end frames. We then sample éWérgrbe (6Hz) to reduce

the sequence length. For the selected (hand-labelled) start and end frames, we manu:
assign label 1 (void) to the following parts to aid in occlusion handling.

1. Difficult, and therefore mislabelled parts of the frame, e.g leaves and far away objects.
2. Parts around the vanishing point and entry points of moving objects into the scene, su
as cross roads. (See Figs4 and supplementary videos.)

Quantitative evaluation We perform quantitative evaluation to report global and class
average accuracies (SeEl] for definitions) with and without small static classes (SSC =
{signs, poles, road markings}) over 6 sequences. Due to the labelling protocol and voi
labels, we compute these accuracies only over pixels labelled into known classes by o
method and in the ground truth. For the same reasons, we tabulate the number of poi
labelled by our scheme versus PGP in Table

Label inference The RGB channels are treated independently and scaled betwien 0
1.0. In algorithm2, we use a patch size of</7 with their centers shifted by a pixel in both
axes, and set the pri@(Ty ;) to “flat” over a 30x 40 pixel-grid centered on the pat¢ghThe
search area exceeding the image border is cut-off. The variances of all the Gaussians
fixed to 10. We perform two iterations including the first where the classifier is cut-off.

Learning the classifier We choose the® stage Random Forest (RF) classifier, aslifi,[

with 16 trees, each of depth 10. Input LAB patches ok21l are extracted around evefy 5
pixel on both axis. We leave out border pixels in a 12 pixel band to fit all rectangular patche:
We use the same kind and number of features a$ih [The key difference in training is
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Figure 3:The effect of thresholgt for Seq. S1 on: (a). training with proposed generative propagtio
(PGP) labels (graceful drop) versus training with end frame labels (steep drop) , (b). global accul
of classifier estimates (steep drop in the end frames case) and (c) Performance of large classes |
greater than all static classes (ASC). Zoom-in to see the details. See supplementary material for vi

that we train withsoft labels delivered by PGRne way to handle soft labels is tepli-
catethe data point wittdeterministic label@ccording to class probabilities. To avoid this
computational overhead, we compute the split function information gain and the leaf nc
distributions by treating the data point label as a vector whose elements sum to unity. C
sequentially, we are able to train using uncertain (void) labels which have “flat” distributio
alongwith certain labels (delta) in a seamless manner. In contrast, semi-supervised leat
methods such as3] device loss functions in order to include unlabelled data alongside I
belled data. Conceptually, we automatically balance out the function of the RF, between
extremes as a classifier (fully labelled data) and a clustering method (void labels only), w
[8] use the RF only in the classifier mode.

In algorithm3, we manually select themaximum probability threshold to maintain a bal-
ance between the number of labelled points and their global average accuracy. This y
meter could be included a random variable in the model but at a cost of increased m
complexity. Therefore, we set by visual inspection to gate through the estimated labels.

Training with hand-labelled frames v/s learning with proposed generative propagation
(PGP) The graph (a) in Fi@ plots the number of labelled points which are above an
below the uncertainty threshold, and (b) the corresponding global average accuracies, f
sequence Sl in Figl. These plots are also shown for the case of learning with the two har
labelled end frames and the remaining frames assigned complete void labels. In this cas
u is increased, there is a steep drop in the number of labelled points (and accuracy) al
the threshold. This indicates that the classifier is uncertain about its estimates. In cont
these curves drop (increase) gracefully for learning with our label propagation scheme. ~
encourages the use of our scheme for classifier training.

Performance versusu The graph (c) in Fig plots the global and class avgerage accu
racies of PHM with and without small classes, the pecentage of labelled points (exclud
voids). We see that including the small classes causes a significant drop in the class ave
This is due to low image resolution affecting both PGP and classifier estimates (CE).

Computational requirements The E-step in algorithnd was implemented in C# with a 8
core processor at a cost of 90s/frame. The M-step in matlab costed 15s/frame on the ¢
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. . . All static classes Large static Small static
Settings Class accuracies for static classes (ASC) classes(LSC) classes (SSC) MC
=
2 3|, F.o Fus,f-3adsE _sadgE £5 EI5
g E B|E S5 @5 oEIE 9 5G8wueswidPl8wl,208 =B 55 0553
g f s|"3wegsegF slegogEeReEERLY B3 2783
g u @ & 3 Sjbc g 26 gc=20|EaS55 fal53
60 PGP|62 6931 0 14 9394 95 84| 86 60 23 89 83 22 5 73 22 97
SO to CE |35 2054 0 0 9284100 75| 83 51 16 84 68 16 1 92 7 98
810 PHM| 75 2627 0O 7 9391 97 78/ 79 55 53 | 82 77 51 5 52 44 | 87
810 PGP|87 99 2 1 30 9894 65 -| 93 60 22 96 89 21 3 79 18 93
S1 to CE |10091 0 O 44 9399 8 -| 95 64 22|95 94 21 1 94 5 99
1560 PHM| 99 88 1 O 7 9087 77 -8 56 65|91 83 62 3 36 61 | 76
1560 PGP |89 898246 74 949 66 - | 88 79 69 91 88 61 54 24 22 77
S2 to CE |99 756023 77 8792 52 -| 8 71 58 |87 8 51| 37 39 23|65
2310 PHM| 95 806020 75 8085 66 - | 79 70 91 85 83 80 53 4 43 5
2310 PGP |99 968244 62 9497 36 -| 90 76 79 94 86 69 58 12 30 75
S3 to CE |100 835229 67 9387 41 -| 8 69 66 | 90 83 58| 39 29 32|56
3060 PHM| 99 877730 65 8878 35 -| 83 70 94 88 80 82 61 1 39 2
3060 PGP |98 98 1747 63 9797 19 -| 95 67 13 98 82 12 9 82 9 94
S4 to CE |[10099 0 O 43 939 0 -| 94 54 13 | 95 78 13 1 96 3 84
3810 PHM| 98 921612 37 9385 9 - | 90 55 45 92 76 44 19 43 38 38
3810 PGP |96 99 5 2 41 9781 54 -| 93 59 26 | 9% 8 25 6 72 22 | 94
S5 to CE |10099 0 3 75 9997 5 -| 98 60 36 99 80 36 1 90 9 84
4560 PHM[10097 1 1 17 9476 4 -| 90 49 79 93 74 76 7 24 69 35

Table 1:Quantitative test results witln = 0.25. Note the high accuracies for PHM for Seq. S1 in Fig.

4 (blue). Compare the accuracies with and without small classes (pink). Note that true positives ar
uncertain labels together share the majority for SSC (orange). Note (yellow) the void labels assigne
to moving classes (an unoptimisgdreduces performance in S2,S3,S4 and S5).

processor. This code was not optimised. With a C# implementation classifier training took
hours for 150 frames. We are working towards making these codes publicly available.

5 Comparative analysis

We list below our key comparative observations for various methods.

Generative propagation of [l] the inferred labels using the model df js shown in row
(c) of Fig. 4. The labels erroneously converge to a few large classes as there is no provisic
for occlusion handling (See frame 1260 in row(c)).

Generative propagation in our model (PGP) the inferred labels in row (d) of Fig4
(classifier is cut-off) shows ouronservative labellingpproach, where the frames farther
away from the ends have increasing amounts of void labels (See frame 1260 ). We repla
void labels by image pixels for clarity. However, from Talilé is clear that although both
accuracies are high, only a small percentage of points are labelled into known classes, exc
in sequences S2,S3 where the camera is nearly static. Itis also apparent that, except in SZ
(small classes have reasonable accuracy), most small classes are assigned voids. This br
down the percentage of false positives. Also, importantly, moving objects are assigned
void label to a high degree to hetpckle occlusion Finally, note that the untextured sky
parts are assigned a void label due to unreliable patch mappings.
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| Frames: 810 | ¥

No occlusion
labels
Converges to
few classes

€) Model of [1]

Occlusion labels
Fewer class
labels farther
from ends

d) Proposed
Generative
Propagation
(PGP)

Disoccluded
objects labelled
Fewer class
labels

e) Classifier
learnt using
PGM (CE)

f) Proposed Hybrid
Model (PHM)

Significantly
more occlusion-
aware labels

Figure 4:Qualitative comparisons on sequence S1 (see TablEhe reader is encouraged to zoom-in
to see the details. Also refer the supplementary material for this result video and others.

Classifier estimates (CE) the classifier is learnt from the inferred labels (PGM) of row (d)
and the user labelled frames. The classifier estimated labels gtl9.25) are shown in
row (e) of Fig.4. From Tablel (CE) it can be seen that the accuracies nearly follow those ¢
generative propagation, confirming the fact that the classifier “overfits” the scene well. N
the high degree of void labels assigned to small classes and moving objects. Untexturec
parts, disoccluded and newly appearing parts of the static segnpavements, are correctly
labelled (see frames 105[260). This is key t@rolong label propagation However, the
percentage of labelled points is similar to PGP.

Proposed hybrid model (PHM) From row (f) of Fig.4 we can observe a marked increase
in the number of labelled points. We point the reader to frame 1260 to observe this effec
increase. Note how both PGP (void labels over entering cars) and CE (sky, repeating
occluded structures) estimates hameficially fusedClasses similar in appearance, such a:
pavements and roads are clearly distinguished. Small classes like roadmarkings are lab
reasonably well too. Tablé shows a significant percentage increase in the labelled poin
over both PGP and CE methods. However, there is a decrease in the global and clas
erages. This is clearly due to low averages over small classes, as discounting these cl
leads to a significant increase in accuracy. The reason, firstly, is that the classifier has
little data to learn small classes in low resolutions. Secondly, for fairness, the value o
is unoptimised, except for S1. This reduces void labels over moving classes too and br
down the class averages. These drawbacks can be removed in higher resolutions and ir
ing u into the model as a random variable (s&€]].
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6 Conclusion

We presented a Bayesian network model, which is a hybrid of generative label propagatic
and discriminative classification, to propagate labels in complex video sequences with occl
sions. We chain together the sequence and its time-reversed version to negate the effect
causality. In contrast, a corresponding undirected model involves defining joint distribution
with normalization issues. As compared to more principled hybrid modglsvg sacrifice
rigor and propose the treatment of a classifier as a "blackbox" within the Bayes net to incluc
off-the-shelf classifiers. The similarity with their approach lies in the fact that the mapping
variables in our hybrid model balance between the generative and discriminative extrem
in modelling the visible data. We empirically demonstrated the advantage of learning witl
inferred labels over learning with two hand-labelled frames. This encourages the use of o
method to train classifiers for large scale applications, like driving scene recognition. Ex
tensive quantitative tests indicate the efficacy of our approach over generative propagati
alone.
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