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Abstract— In this paper, we present an outlier removal
scheme for stereo-based visual odometry which is especially
suited for improving high-speed pose change estimations in
large-scale depth environments. First we investigate the vari-
ance of the reprojection error on the 3D position of a feature
given a fixed error in pose change to conclude that a detection
of outliers based on a fixed threshold on the reprojection error
is inappropriate. Then we propose an optical flow dependent
feature-adaptive scaling of the reprojection error to reach
almost invariance to the 3D position of each feature. This
feature-adaptive scaling is derived from an approximation
showing the relation between longitudinal pose change of the
camera, absolute value of the optical flow, and distance of the
feature. Using this scaling, we develop an iterative alternating
scheme to guide the separation of inliers from outliers. It
optimizes the tradeoff between finding a good criterion to
remove outliers based on a given pose change and improving
the pose change hypothesis based on the current set of inliers.
Including the new outlier removal scheme into a pure two-frame
stereo-based visual odometry pipeline without applying bundle
adjustment or SLAM-filtering we are currently ranked amongst
the top camera-based algorithms and furthermore outperform
camera and laser scanner methods in Kitti benchmark’s high-
speed scenarios.

I. INTRODUCTION

Stereo-based visual odometry estimates the motion of a
camera given by its three-dimensional pose change between
temporal consecutive images from a sequence of stereo
image pairs. This information can be used as an estimate
of the current driving states for different driver assistance
systems such as anti-lock braking system (ABS), electronic
stability control (ESC), cruise control or roll stability control
(RSC) and many more. Further on, it can be used as input for
any dead reckoning approach to estimate the trajectory and
location of the vehicle. Challenging situations for camera-
based systems include an insufficient number of correspon-
dences of static scene points, heavily changing illumina-
tion and low brightness, an unstructured environment with
homogeneous, non-textured surfaces, or an improperly low
frame rate. High-speed scenarios along motorways combine
several of these problems, making them one of the most
challenging situations. Especially, the loss of suitable near
features complicates the estimation. In this paper, we show
why the classical approach of an outlier detection based
on reprojection error fails in such situations and how to
circumvent this problem. We analyze the variance of the
reprojection error with regard to the 3D position of a feature
for a fixed estimation error shown in Fig.1 and explained in
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Fig. 1. The estimated motion from visual odometry leads to the cyan
optical flows instead of the yellow real flow induced by the motion of the
ego-vehicle. All correspondences but the one marked by the red circle are
error-free. This true outlier has an additive error in the depth estimate. The
reprojection error (proportional to the length of the red and green bars in
the upper image) shows a low error for the distant outlier, thus selected
as an inlier (green bar) but high values for close true inliers, which are
marked as outliers (red bars). Our proposed normalized reprojection error
(proportional to the length of the red and green bars in the lower image)
shows an almost constant offset for all features due to the estimation error
and an increased error for the true outlier, now also marked as an outlier
(red bar). The true inliers are now selected as inliers (green bars).

Sec. III-A. This uncovers that outlier removal based on the
reprojection error often leads to problems when estimating
the translation in scenarios with large differences in the
features’ 3D positions. Solving this problem, we derive a new
measure to valuate the quality of feature correspondences.
Fig.1 shows the comparison between the classical and our
approach to rate features for outlier removal. In Sec. IV we
present an iterative optimization scheme alternating between
outlier rejection and pose change estimation refinement,
which is based on the new criterion. An evaluation based
on the Kitti benchmark [8], which provides city, overland
and freeway scenarios and comparisons to state-of-the-art
methods are given in Sec. V. Our system currently2 ranks
first place amongst camera-based algorithms in the Kitti
benchmark. Furthermore, at speeds higher than 70 km/h it
achieves better results than the best camera and laser-scanner
based methods in the benchmark.
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II. RELATED WORK

The essential part of any visual odometry system is the
detection of outliers. Therefor, a broad variety of methods has
been introduced: Purely flow-based approaches can be found
in [1], [10], [16]. All of them are based on the assumption,
that the flow follows patterns which are induced by the
egomotion of the car. Next, motion model-based approaches
for outlier detection exist, that explicitly constrain the flow
using a certain motion model as in [18]. The majority of
existing systems use reprojection error-based approaches.
Here mainly two different ways for finding a proper inlier set
are used. The first one is RANSAC [7], which is based on
the following principle: In each iteration, a minimum number
of random samples is taken from the correspondences to
create a motion hypothesis. Then, a score for each feature is
calculated that describes whether it supports the hypothesis.
If the motion estimate reaches a predefined support of the
features, the non-supporting features are marked as outliers.
Otherwise, a new random sample is drawn and the next
iteration starts. In order to define the support of a feature
in this RANSAC-scheme, the authors of [3], [11], [12], [17]
calculate the reprojection error for each feature and compare
it to a constant threshold. Trying to optimize the random
process of finding the right hypothesis to separate the features
into inliers and outliers, numerous extensions were created. A
comparison between the most prominent ones can be found
in [15].
Due to the random selection of correspondences one can
not expect a steady improvement of the resulting motion
estimation during the iterations. Coping with this problem, an
alternative method was applied in [2], [13], [23]. Following
the naming that was used for RANSAC we unite this class
of methods under the notation MAximum Subset Outlier
Removal (MASOR). Here, the maximum number of features
instead of a minimum random sample is taken to calculate a
motion hypothesis. This motion estimation and a subsequent
outlier rejection step are repeated in an iterative scheme.
Then a support score is calculated for every feature. Instead
of judging the hypothesis, the score is interpreted as a
measure for the quality of each feature, as the hypothesis
is considered to be a good estimate. Non-supporting features
are rejected and the next iteration starts with the remaining
features. The process is repeated until a termination criterion
is met. This approach is a good alternative to RANSAC
if the number of inliers is sufficient enough to create a
hypothesis that is good enough to separate the outliers, which
is fulfilled in scenarios that we tested. Due to the broad
application of the reprojection error for outlier detection, our
proposed transformation is of interest for a wide class of
outlier rejection schemes such as RANSAC and MASOR.

III. HOW TO DEFINE AN OUTLIER?
We start with the classical least squares estimator

(R̂, T̂) = argminR,T
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T = λ t
i xt

i . The pose
change of the camera from time t−1 to time t is given by the
3D translation vector4 T = [tx, ty, tz]

T ∈ R3 and the rotation
matrix5 R ∈ SO(3) and π denotes the standard planar pro-
jection [X ,Y,Z]T 7−→ [X/Z,Y/Z,1]T with lateral coordinate
X, transversal coordinate Y and forward coordinate Z.
Following the classical visual odometry pipeline, we assume
that for each point pi the depth λ t

i ∈ R is measured by
some stereo vision algorithm, the image coordinates xt−1

i
are extracted by some feature detector and the correspondent
image coordinates in the next frame xt

i are measured by some
optical flow algorithm. To find the optimal estimate of the
pose change (R̂, T̂) via minimizing the objective (1) with an
iterative gradient descent method6 some initial guess for the
pose change has to be given.
Now, we are faced with the main problem of visual odome-
try: Given the set of all extracted features, we need to find
suitable features – the inliers – and reject all other features
from the set – the outliers. This is usually done by selecting
only features with reliable measurements {λ t

i ,x
t−1
i ,xt

i} and
defining some criterion to evaluate how well these measure-
ments fit to some hypothesis of the estimate (R̃, T̃).
The reliability of a measurement has two aspects. First,
since in stereo vision depth λ t

i = b/dt
i is reconstructed

from disparity dt
i using a stereo rig with a fixed known

baseline b and both the disparity dt
i and the pairs {xt−1

i ,xt
i}

are based on a correspondence search, only unambiguous
correspondences, e.g. not facing the aperture problem, should
be taken into account. Second, the accuracy of these corre-
spondences are limited by the resolution of the images. So
even if the correspondences are unambiguous the smaller
their distances in image space ||xt

i − xt−1
i || and dt

i , the less
accurate the pose change can be estimated. This is because
the ratios ||xt

i−xt−1
i ||/∆p and dt

i/∆p between distances ||xt
i−

xt−1
i ||, dt

i and the limited image resolution ∆p are getting
smaller with smaller image-distances and thus the signal-
to-resolution-ratio decreases. Especially for the accuracy of
the reconstructed depth λ t

i = b/dt
i , this is crucial because

the resolution of depth ∂λ t
i ∝ ∂dt

i (λ
t
i )

2 reduces quadratically
with disparity.
Considering these facts, it seems to be easy to figure out
good features. Choose near features with large optical flow
that are based on highly confident correspondence estimates.
Additionally, each correspondence has to fulfill the epipolar
constraint for one optimal estimate (R̂, T̂), thus the features
have to be projections of static points in the scene only. Since
we cannot guarantee that the measurements are all confident

3Known intrinsic camera parameters are assumed.
4The time index for T and R is neglected for convenience.
5The space of rotation matrices is denoted by SO(3) := {R∈R3×3|RT R=

I,det(R) = 1}.
6For example the Gauss-Newton or Levenberg-Marquardt method.
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and we do not have the optimal pose change estimate at
hand, we need to find a good hypothesis (R̃, T̃) and a proper
criterion to keep as much suitable features as possible.
To resolve this very task, we investigate the reprojection error
(2) in two ways: On the one hand, it should be used as the
criterion to remove outliers based on a threshold given a pose
change hypothesis and on the other hand, it should improve
the hypothesis of the pose change given the inliers. In order
to combine both subproblems in an alternating scheme, we
figure out how to use the reprojection error for both subtasks
such that as many inliers as possible are kept which also leads
to a more accurate estimate of the pose change.
To find a good criterion for the outlier removal, we ex-
amine the variance of the reprojection error on the val-
ues of the measurements assuming error-free measurements
{λ̂ t

i , x̂
t−1
i , x̂t

i} and an imprecise pose change hypothesis
(R̃, T̃). For improving the pose change estimation, we as-
sume error-prone measurements {λ̃ t

i , x̃
t−1
i , x̃t

i} and try to
maximize the improvement of the iterative pose change
estimation (R̂, T̂) by using the knowledge about the variance
of the reprojection error on the values of the measurements
again.

As stated in [22], high translational errors occur at large
longitudinal pose changes along the optical axis. The trans-
lation estimates get especially poor for long distance features
[14]. To receive a first impression on the consequences for
the sensitivity of the reprojection error in such driving sce-
narios Fig.2 shows the dependency of the reprojection error
ε t

i for an increase in longitudinal translation error estimates
∆tz for varying feature depths λ t

i . It clearly illustrates that
the reprojection error (RE) linearly increases with increasing
translation error but the sensitivity of the reprojection error
(the slope of the lines) decreases with increasing distance of
the features.
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Fig. 2. Reprojection error (RE) ε t
i for an error-prone translation t̃z = t̂z+∆tz,

with t̂z = 100km/h and a range of ∆tz = [−10%;10%] t̂z for varying error-
free feature depths λ̂ t

i of 10, 50 and 100 m. The decrease of the sensitivity
(slope of the lines) with increasing depth can clearly be seen.

A. The Reprojection Error in High-Speed Scenarios

For error-free measurements {λ̂ t
i , x̂

t−1
i , x̂t

i} and the optimal
motion estimate (R̂, T̂), the reprojection error (2) becomes
zero because it holds

x̂t−1
i = π(R̂λ̂

t
i x̂t

i + T̂) , ∀ i, t . (3)

In order to find a proper threshold on the reprojection error
to reject outliers, we have to define some motion error range
(∆R,∆T) on the optimal estimate (R̃, T̃) = (R̂∆R, T̂+∆T) to
find the reprojection error range given the motion error range
and error-free measurements. This results in the sensitivity
of the reprojection error

∆ε
t
i = ||x̂t−1

i −π(R̃λ̂
t
i x̂t

i + T̃)||2 , ∀ i, t . (4)

Now, considering high-speed scenarios, we can assume very
small rotations

1. high-speed approximation: R≈ I , (5)

thus the rotation matrix approximately equals the identity
I and much larger longitudinal than horizontal and vertical
movements tz � tx, ty, thus the lateral and transversal com-
ponents of the translation are approximately equal to zero

2. high-speed approximation: tx, ty ≈ 0 . (6)

Applying approximation (5) and (6) we get an approximation
of the sensitivity of the reprojection error (4) under high-
speed for an error-prone motion hypothesis t̃z = t̂z+∆tz which
reads

∆ε
t
i ≈

∥∥∥∥∥∥∥
 λ̂ t

i x̂t
i

λ̂ t
i +t̂z
− λ̂ t

i x̂t
i

λ̂ t
i +t̂z+∆tz

λ̂ t
i ŷt

i
λ̂ t

i +t̂z
− λ̂ t

i ŷt
i

λ̂ t
i +t̂z+∆tz


∥∥∥∥∥∥∥

2

(7)

=

∣∣∣∣∣ λ̂ t
i ∆tz

(λ̂ t
i + t̂z)(λ̂ t

i + t̂z +∆tz)

∣∣∣∣∣∥∥x̂t
i
∥∥

2 . (8)

The sensitivity of the reprojection error is scaled by the
absolute value of the image coordinate ‖x̂t

i‖2 and damped
by the feature’s depth λ̂ t

i . This means, an incorrect motion
hypothesis t̃z = t̂z +∆tz with a fixed error range ∆tz produces
a variant sensitivity ∆ε t

i dependent on the feature’s position,
as illustrated in Fig. 3. Thus, methods that base the outlier
removal on a constant threshold on the reprojection error
remove close features, although the measurements are error-
free (or error-prone in the same range as for distant features).

This leads to the breakdown of outlier removal in high-
speed scenarios for methods based on a fixed threshold on
the reprojection error. As close features with high absolute
values of their correspondences are lost during the outlier
rejection process, the sensitivity of the reprojection error
against forward translation gets lost, as can be seen in Fig.
2. In turn, this results in worse estimates of the translation
because the signal-to-resolution ratio is getting small and
cannot be exploited anymore. To conclude, a reasonable
threshold to judge the feature’s quality can not be a constant
value but must incorporate the depth as much as the length
of the image coordinate in order to make a meaningful
statement on the feature’s quality.

B. Almost Invariant Criterion for Outlier Removal

To reduce the variance of the reprojection error on the
feature position we can either apply a position adaptive
threshold for outlier removal or normalize the reprojection
error for coordinate ‖x̂t

i‖2 scaling and depth λ̂ t
i damping.
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Fig. 3. Comparison between sensitivity of reprojection error ∆ε t
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red) and sensitivity of normalized reprojection error ∆ε
t
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depth λ t
i . The reprojection error is dampened by distant and slow features

and a fixed threshold outlier criterion tends to lose close and fast features.
By contrast, the normalized reprojection error amplifies distant and slow
features up to some saturation, thus a fixed threshold outlier criterion tends
to keep close and fast features.

Since the resolution of the measured depth values decreases
with distance and depth measurements are error-prone in
general, we do not want to incorporate them to compensate
the depth damping of the reprojection error. Instead, we use
the dependency of the absolute value of the optical flow on
the depth and use the optical flow measurements to normalize
the reprojection error as follows:
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motion tz of 100 km/h in which every tenth feature f t
i has an error of 10 %

in the estimated depth λ t
i (middle). The depths start at 3 m for feature f t

1
and end at 100 m for feature f t

50.

The error-free absolute value of a feature’s optical flow
induced by an error-free straight forward motion t̂z again

assuming (5) and (6) reads∥∥x̂t−1
i − x̂t

i
∥∥

2 =
∥∥∥π(R̂λ̂

t
i x̂t

i + T̂)− x̂t
i

∥∥∥
2

(9)

≈

∣∣∣∣∣ t̂z
λ̂ t

i + t̂z

∣∣∣∣∣∥∥x̂t
i
∥∥

2 . (10)

Using the absolute value of the current flow as a normaliza-
tion to the sensitivity of the reprojection error, we get

∆ε
t
i =

∆ε t
i∥∥x̂t−1

i − x̂t
i

∥∥
2

≈

∣∣∣∣∣ λ̂ t
i ∆tz

t̂z(λ̂ t
i + t̂z +∆tz)

∣∣∣∣∣≈
∣∣∣∣∆tz

t̂z

∣∣∣∣ . (11)

Here, the second approximation assumes the depth being
much larger than the longitudinal motion λ̂ t

i � t̂z +∆tz. For
this reason, the normalized reprojection error is not scaled
by the absolute value of the image coordinate anymore and
almost not dependent on the distance of long distant features.
This can also be seen in Fig. 3.

Thus, using a threshold εthresh on the normalized repro-
jection error ε

t
i to mark each feature f t

i as a member of the
current feature set F t , we apply

f t
i

∈F t , if ε
t
i =

εt
i

‖xt−1
i −xt

i‖2
< εthresh ,

/∈F t , else .
(12)

This criterion (as part of an outlier removal scheme ex-
plained in Sec. IV) turns out to be very suitable for outlier
removal, especially in high-speed scenarios, because it is
almost invariant to the features’ 3D position. Fig. 4 shows a
comparison between the reprojection error ε t

i (top) and the
normalized reprojection error ε

t
i (bottom) for some error-

prone depth estimates and a forward motion tz of 100 km/h.
The reprojection error does not allow a separation between
inliers and outliers because ε t

i scales with the absolute value
of the coordinate of the features. By contrast, ε

t
i (bottom)

leads to a clear separability.

C. Hypothesis Refinement on the Inlier Set

One question was not yet addressed: Since the normalized
reprojection error (11) improves the outlier rejection, is it
also suitable to get better hypothesis refinements for the least
squares problem formulated in (1)? Now, assuming error-
prone measurements {λ̃ t

i , x̃
t−1
i , x̃t

i} and trying to minimize
(1) to get a better pose change estimate (R̂, T̂) the features
with measurements that possess a high resolution should
contribute more to the estimate than measurements with low
resolution. This can be realized with an extension of (1) to
a weighted least squares problem that realizes a decrease
of the weights for distant features and an increase of the
weights for larger optical flow amplitudes. Looking at the
approximation of the reprojection error (8) for high longi-
tudinal speeds, this weighting is intrinsically done by the
reprojection error itself, whereas the normalized reprojection
error would treat the features more or less equally weighted.
Thus, for refinement of the motion hypothesis based on the
current set of inliers, the (un-normalized) reprojection error
is already most suitable.
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IV. INCREMENTAL ALTERNATING OUTLIER REMOVAL
AND POSE REFINEMENT SCHEME

To realize an iterative optimization scheme that carefully
alternates between incremental outlier rejection and pose
change refinement, we need a suitable set of a reasonable
number of features to start with. A suitable feature has un-
ambiguous temporal as well as stereoscopic correspondence
measurements to get as much reliable optical flow and depth
estimates as possible.

A. Per Frame Initialization

Our initial feature set for every stereo-frame-pair is created
as follows applying only standard functions of the OpenCV
library [5]: We start with the feature-selection using the Shi
and Tomasi method [21]. For each feature the disparity at
time t − 1 is calculated using SAD-based block matching.
For optical flow initialization, we triangulate each feature’s
position in 3D space at time t−1 and reproject the features to
the current frame at time t using a modified constant turn rate
and velocity model based on the last estimated pose change
(which is a variant of motion model predicted tracking by
matching proposed in [14]). After that the optical flow for the
left and right image between time t−1 and t is refined with
the Lucas-Kanade method [4]. The final feature set F t

0 =

{xt−1
i ,xt

i,λ
t
i }

N0
i=1 with a starting number N0 for initialization

is reached via a left-right consistency check at time t for
all remaining optical flow estimates (which is a variant of
circular matching proposed in [9]).

B. Alternating Iteration Based on MASOR

We iterate over p alternating between a) pose refinement
keeping the current inlier set F t

p−1 fixed and b) outlier
removal keeping the current pose (R̂p, T̂p) fixed:

a) Pose refinement starts with F t
0 at first iteration p = 0.

The pose estimate is initialized with the estimate of the last
frame R̂t

0 = R̂t−1 and T̂ t
0 = T̂ t−1. In the following we omit

time index t for simplicity.

(R̂p, T̂p) = argminR,T ∑
i

(
ε

t
i
)2

,∀ f t
i ∈F t

p−1 (13)

b) Outlier removal applying our combined criterion, which
we call Robust Outlier Criterion for Camera-based Odome-
try (ROCC):

f t
i


∈F t

p, if ε
t
i(R̂p, T̂p)< ε

thresh
p

and ε t
i (R̂p, T̂p)< ε thresh

p ,

/∈F t
p, else .

(14)

Here we increase the thresholds ε
thresh
p and ε thresh

p in a
coarse to fine manner during the iterations. If the number
Np of the feature set does not change any more, a minimum
number of features Nmin is reached or a maximum number
of iterations pmax is reached, we terminate our robust pose
estimation scheme and perform one last refining optimization
run with the remaining features. This run is initialized with
the rotation and direction of the translation estimate from
openCV’s standard least median of squares 2D-2D five point

method.
In order to evaluate our robustified criterion for outlier
detection, we compare our results with MASOR approaches
that use the reprojection error. In 2005, the authors of [23]
applied the following criterion to classify outliers:

f t
i

{
∈F t

p, if ε t
i (R̂p, T̂p)−µp < 1.5σp ,

/∈F t
p, else .

(15)

With mean error µp = ∑
Np
i ε t

i
(
R̂p, T̂p

)
/Np and squared stan-

dard deviation σ2
p = ∑

Np
i

(
ε t

i
(
R̂p, T̂p

)
−µp

)2
/(Np−1). The

total number of iterations was set to a fixed value.
In 2011 the authors of [2] changed the criterion slightly:

f t
i

{
∈F t

p, if ε t
i (R̂p, T̂p)< 32µp ,

/∈F t
p, else .

(16)

The estimate of the forward translation tz in Fig.5 shows
massive breakdowns when applying the methods from [2]
(Mean-based) and [23] (Std-based). As we derived in Sec.
III-A, this is due to the use of the reprojection error. By
contrast, our new ROCC shows only minor errors and leads
to a robust estimation.
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Fig. 5. Comparison of the MASOR-methods in [2] (Mean-based), [23]
(Std-based) and our new approach in the freeway-scenario of track 01.

V. EVALUATION

In order to evaluate the performance of our method in
high-speed scenarios, we first compare it with state-of-the art
visual odometry algorithms without additional sensor-data:
The method from [6] achieves the second best overall result
in the Kitti benchmark with a translation error of 1.03 %. The
authors use feature tracking on the base of many images.
With an error of 1.09 %, the algorithm from [14] shows
a slightly worse quality. Here, the authors apply bundle
adjustment to improve the motion estimation. By contrast to
these three methods, we do not use the feature’s history. As
depicted in Fig.6, this leads to an almost constant additional
error in comparison to the two other methods. Despite the
loss of precision due to not using the feature’s history, our
new outlier rejection scheme leads to a lowered error from
a speed of approximately 65 km/h on. This shows, that the
application of our new measure enables even a comparative
imprecise system to outperform state-of-the-art methods. In
order to underline the performance in high-speed scenarios,
we also compare our results to methods that incorporate
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Fig. 6. Comparison between our method and the two best camera-
based algorithms in the Kitti benchmark. From a speed of 65 km/h on, our
system achieves the best reconstruction quality amongst the top three ranked
methods.

the information from a high-precision laser scanner: With
an error of 0.88 % and 1.14 %, the methods from [27]
and [26] reach a very high reconstruction quality. The top-
ranked method from [28] even achieves an overall-error of
0.75 %. Fig.7 illustrates the comparison between the laser
scanner extended systems and our system. Despite showing
an inferior overall reconstruction quality due to the inferior
sensor-setup, our careful outlier rejection again leads to the
best reconstruction quality at speeds higher than 70 km/h.
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Fig. 7. Comparison between our camera based algorithm and the three best
systems of the Kitti benchmark, based on stereo camera and laser scanner.
From a speed of 70 km/h on, our system outperforms the top rated systems.

VI. CONCLUSION AND FUTURE WORK

In our work, we motivated the need for a new error crite-
rion in outlier detection schemes. After deriving a normalized
reprojection error criterion from theoretical considerations,
we applied it in an outlier detection within an iterative
scheme for a frame-to-frame system. This leads to a careful
rejection of outliers while simultaneously preserving as many
close inliers as possible. Hereby we are able to drastically
increase the robustness and reconstruction quality.
Next, we would like to investigate more accurate but fast and
sparse optical flow algorithms [24], [25], the embedding into
a local bundle adjustment framework [14] and the integration
of additional environmental information [19], [20].
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