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Abstract—In this paper, we address the problem of automatically detecting and tracking a variable number of persons in complex

scenes using a monocular, potentially moving, uncalibrated camera. We propose a novel approach for multiperson tracking-by-

detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence

of pedestrian detectors and online-trained, instance-specific classifiers as a graded observation model. Thus, generic object category

knowledge is complemented by instance-specific information. The main contribution of this paper is to explore how these unreliable

information sources can be used for robust multiperson tracking. The algorithm detects and tracks a large number of dynamically

moving people in complex scenes with occlusions, does not rely on background modeling, requires no camera or ground plane

calibration, and only makes use of information from the past. Hence, it imposes very few restrictions and is suitable for online

applications. Our experiments show that the method yields good tracking performance in a large variety of highly dynamic scenarios,

such as typical surveillance videos, webcam footage, or sports sequences. We demonstrate that our algorithm outperforms other

methods that rely on additional information. Furthermore, we analyze the influence of different algorithm components on the

robustness.

Index Terms—Multi-object tracking, tracking-by-detection, detector confidence particle filter, pedestrian detection, particle filtering,

sequential Monte Carlo estimation, online learning, detector confidence, surveillance, sports analysis, traffic safety.
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1 INTRODUCTION

NEW video cameras are installed daily all around the
world, as webcams, for surveillance, or for a multitude

of other purposes. As this happens, it becomes increasingly
important to develop methods that process such data
streams automatically and in real time, reducing the
manual effort that is still required for video analysis. Of
particular interest for many applications is the behavior of
people, e.g., for traffic safety, surveillance, or sports
analysis. As most tasks at semantically higher levels are
based on trajectory information, it is crucial to robustly
detect and track people in dynamic and complex real-world
scenes. However, most existing multiperson tracking
methods are still limited to special application scenarios.
They require either multicamera input, scene-specific

knowledge, a static background, or depth information, or
are not suitable for online processing.

In this paper, we address the problem of automatically
detecting and tracking a variable number of targets in
complex scenes from a single, potentially moving, uncali-
brated camera, using a causal (or online) approach. This
problem is very challenging because there are many
sources of uncertainty for the object locations, such as
measurement noise, clutter, changing background, and
significant occlusions.

In order to cope with these difficulties, tracking-by-
detection approaches have become increasingly popular,
driven by the recent progress in object detection. Such
methods involve the continuous application of a detection
algorithm in individual frames and the association of
detections across frames. In contrast to background model-
ing-based trackers, they are generally robust to changing
background and moving cameras.

The main challenge when using an object detector for
tracking is that the detector output is unreliable and sparse,
i.e., detectors only deliver a discrete set of responses and
usually yield false positives and missing detections. Thus,
the resulting association problem between detections and
targets is difficult. Several recent algorithms address this
problem by optimizing detection assignments over a large
temporal window in an offline step [1], [3], [26], [30]. They
use information from future frames and locate the targets in
the current frame with a temporal delay or after the
entire sequence has been observed. In contrast, Sequential
Monte Carlo methods offer a framework for representing
the tracking uncertainty in a causal manner. By only
considering information from past frames, such approaches
are more suitable for time-critical, online applications.
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Although a few methods exist for online multitarget
tracking-by-detection, they rely only on the final, sparse
output from the object detector [7], [33], [45]. In contrast,
our approach is based on monitoring its continuous detection
confidence and using this as a graded observation model.
The intuition is that by forgoing the hard detection decision,
we can render tracking more robust. Although such a
combination appears desirable, available object detectors
have only been optimized for accurate results at those
locations passing the final nonmaximum suppression stage.
This said, it is not guaranteed that the shape of the
confidence volume in between those locations will support
tracking. In particular, a majority of the densities’ local
maxima correspond to false positives that may deteriorate
the tracking results, especially during occlusions and when
several interacting targets are present.

The main contribution of our work is the exploration of
how this unreliable information source can be used for
robust multiperson tracking. Our algorithm achieves this
robustness through a careful interplay between object
detection, classification, and target tracking components.
Typically, a bottom-up process deals with target representa-
tion and localization, trying to cope with changes in the
appearance of the tracked targets, and a top-down process
performs data association and filtering to deal with object
dynamics. Correspondingly, our approach is based on a
combination of a general, class-specific pedestrian detector to
localize people and a particle filter to predict the target
locations, incorporating a motion model. To complement
the generic object category knowledge from the detector,
our algorithm trains person-specific classifiers during runtime
to distinguish between the tracking targets.

This paper makes the following contributions:

1. We combine a generic class-specific object detector
and particle filtering for robust multiperson tracking
suitable for online applications. The algorithm
addresses the specific problems caused by the
unreliable output from object detectors and the
presence of multiple, possibly interacting targets.

2. To handle false positive detections, we learn target-
specific classifiers at runtime which are used to
select high-confidence detections and associate them
to targets.

3. To handle missing detections, we exploit the
continuous confidence density output of detectors
and classifiers.

4. We analyze and discuss the robustness of the
method, in particular the influence of each part of
the algorithm.

5. We experimentally validate our method on a large
variety of highly dynamic scenarios. We quantita-
tively compare our method to other algorithms and
demonstrate that ours outperforms several state-of-
the-art algorithms that require multicamera setups,
scene knowledge, noncausal processing, or that rely
on object detectors that are specifically trained for a
specific application.

In contrast to our previous work [5], [6], we increase the
robustness of the tracker by detecting reappearing persons
that temporally left the scene. Second, we discuss how the

different observation model terms assist in handling
difficult situations, and we quantitatively evaluate the
influence of these terms. Third, we show additional results
and experiments. Additionally, we provide a more com-
prehensive description of the algorithm, as well as im-
plementation details.

The paper is structured as follows: After discussing
related work in the following section, Section 3 describes the
algorithm and several important design choices. Section 4
presents a quantitative evaluation on a large variety of data
sets and a comparison to other algorithms. In Section 5, the
robustness of the observation model is discussed in detail.
Section 6 concludes the paper with a summary and outlook.

2 RELATED WORK

Particle Filtering. Particle filters were introduced to the
vision community to estimate the multimodal distribution
of a target’s state space [19]. Other researchers extended the
framework for multiple targets by either representing all
targets jointly in a particle filter [43] or by extending the
state space of each target to include components of other
targets [41]. In the first approach, a fixed number of
particles represent a varying number of targets. Hence,
new targets have to “steal” particles from existing trackers,
reducing the accuracy of the approximation. In the second
approach, the state space becomes increasingly large, which
may require a very large number of particles for a good
representation. Thus, the computational complexity in-
creases exponentially with the number of targets. To
overcome these problems, most methods employ one
particle filter per target using a small state space and deal
with interacting targets separately [21], [24], [38].

Tracking-by-detection. While many tracking methods
rely on background subtraction from one or several static
cameras [3], [20], [24], [42], [49], recent progress in object
detection has stimulated interest in combining tracking and
detection. In contrast to data association-based tracking
approaches, which link detection responses to trajectories by
global optimization based on position, size, and appearance
similarity [1], [3], [18], [26], [30], [36], [48], the combination of
object detectors and particle filtering results in algorithms
that are more suitable for time-critical, online applications.

To this end, Okuma et al. [33] combine the algorithm of
Vermaak et al. [43] with a boosted object detector. Cai et al.
[7] extend this boosted particle filter using independent
particle sets for each target to increase the robustness for
multiple targets. Additionally, to handle occlusions more
robustly, other researchers use 3D information [11], [15],
train detectors for individual body parts [45], or apply
application-specific motion models [35]. However, all of
those approaches have in common that they rely only on the
final, sparse output from the object detector. On the other
hand, state-of-the-art object detectors all build up some
form of confidence density as one stage of their pipeline
which could be used instead as a graded observation model
to handle difficult situations more robustly.

Previous algorithms that exploit this intermediate output
have been developed primarily for single-target tracking
(mostly of faces) and have not been evaluated thoroughly
for multiple, interacting targets [27]. For example, to apply
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their method to several targets, Li et al. [27] need to employ
offline postprocessing [29]. Similarly, tracking can be
performed by exploiting a classifier trained to distinguish
between object and background [2], [17]. Similar ap-
proaches exist that apply classifiers with different con-
fidence thresholds [28], [46] or accumulate detection
probabilities temporally [8], [40]. However, the extension
of these methods to robust multitarget tracking is not trivial.
Relying on the detector confidence in every situation can
cause tracking errors, particularly during occlusions be-
tween interacting targets and in complex, cluttered scenes.
This work presents a method to use this unreliable
information source for robust multiperson tracking.

Data association. Using independent trackers requires
solving a data association problem to assign detections to
targets. Classical approaches include the Joint Probabilistic
Data Association Filter (JPDAF) [13] and Multi Hypotheses
Tracking (MHT) [39]. MHT considers multiple possible
associations over several time steps, but its complexity
usually limits the analysis to only few such steps. JPDAFs
instead try to make the best possible assignment in each
time step by jointly considering all possible associations
between targets and detections to the cost of an exponen-
tially increasing complexity. Alternatively, the Hungarian
algorithm [22] can be used to find the best assignment of
possible detection-tracker pairs in a runtime that is cubic in
the number of targets. In practice, a greedy approach is,
however, often sufficient, as pointed out by [45].

We stick to a greedy scheme and focus on obtaining a
good scoring function. Such an approach is also used by Cai
et al. [7], but their assignments are made only based on the
spatial distance, without considering target appearance.
This can be problematic for complex scenes with many
targets and difficult background, where many false positive
detections occur. Additionally, color histograms can be
learned (e.g., separately for different body parts [45]),
which, however, do not always distinguish very well
between the targets. Instead, we employ target-specific
classifiers that are trained at runtime. Song et al. [42]
presented a tracking algorithm that also learns target-
specific classifiers. However, their method relies on back-
ground modeling and employs classifiers only when targets
merge and split (i.e., during occlusions). In contrast, our
method exploits the classifiers in each time step similarly to
the very recent work of Kuo et al. [23], using it both for data
association and for the observation model.

3 DETECTOR CONFIDENCE PARTICLE FILTER

For many tracking applications, only past observations can
be used at a certain time step to estimate the location of
objects. Within this context, Bayesian Sequential Estimation
is a popular approach, which recursively estimates the
time-evolving posterior distribution of the target locations
conditioned on all observations seen so far. This filtering
distribution can be approximated by Sequential Monte
Carlo Estimation (or Particle Filtering), which represents the
distribution with a set of weighted particles and consists of
a dynamic model for prediction and an observation model
to evaluate the likelihood of a predicted state [10].

As object detection has made impressive improvements
over recent years, a promising strategy is to employ an

object detector for the observation model. However, the
resulting detections are often not reliable (Fig. 1), i.e., not all
people are detected in each frame (missing detections) and
some detections are not caused by a person (false positive
detections). Furthermore, in cases where no depth or scene
information (e.g., ground plane) is available, the detector
does not know where to expect objects of which size in the
image. To address these problems, many recent methods
rely on global optimization techniques instead of making
successive, irreversible decisions at each time step, which is
a major limitation for time-critical applications.

3.1 Algorithm Overview

Our algorithm implements a first-order Markov model,
considering only information from the current and the last
time step, and integrates both class-specific and target-
specific information in the observation model. A separate
particle filter (tracker) is automatically initialized for each
person detected with high confidence. To achieve the
necessary robustness, the information from an object detector
is integrated in two ways. First, the algorithm carefully
assesses the high-confidence detections in each frame and
maximally selects one to track one particular target. In order
to resolve this data association problem, it evaluates a scoring
function integrating classifiers that are trained during
runtime for each target, the distance to the tracking target,
and a probabilistic gating function accounting for the target
size, motion direction, and velocity. If a detection is
classified as reliable based on this function, it is mainly
used to guide the associated tracker. Otherwise, the
continuous detector confidence and output of the target-
specific classifiers are mainly used. To evaluate the
reliability of the detector confidence, we perform explicit
interobject occlusion reasoning.

Detector confidence. At the core of our approach lies the
confidence density built up by person detectors in some form.
This is the case for both sliding-window-based detectors
such as HOG [9] and for feature-based detectors such as
ISM [25]. In the sliding-window case, this density is
implicitly sampled in a discrete 3D grid (location and scale)
by evaluating the different detection windows with a
classifier. In the ISM case, it is explicitly created in a
bottom-up fashion through probabilistic votes cast by
matching, local features.

In order to arrive at individual detections, both types of
approaches search for local maxima in the density volume
and then apply some form of nonmaximum suppression. This
reduces the result set to a manageable number of high-
confidence hypotheses, but it also throws away potentially
useful information. Fig. 2 illustrates both types of output. As
can be seen, there are situations where a detector did not yield
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Fig. 1. The output of a person detector (right: ISM [25], left: HOG [9])
with false positives and missing detections.



a final detection, but a tracking algorithm could still be guided
using the confidence density. On the other hand, both
detectors also show a high detector confidence on certain
background structures. Thus, relying on this intermediate
output leads to tracking errors (c.f., [27], [28], [46]).

3.2 Particle Filtering

Our tracking algorithm is based on estimating the distribu-
tion of each target state by a particle filter. The state xxxxxxxx ¼
fx; y; u; vg consists of the 2D image position ðx; yÞ and the
velocity components ðu; vÞ. We employ the bootstrap filter,
where the state transition density (or prior kernel) is used as
importance distribution to approximate the probability
density function [16]. The importance weight wit for each
particle i at time step t is described by

wit / wit�1 � pðotjxxxxitÞ: ð1Þ

Since resampling is carried out in each time step using a
fixed number of N ¼ 100 particles, wit�1 ¼ 1

N is a constant
and can be ignored. Thus, (1) reduces to the likelihood of a
new observation ot given the propagated particles xxxxit, which
we estimate as described in Section 3.4 (6).

Size and position. Instead of including the size of the
target in the state space of the particles, the target size is set
to the average of the last four associated detections. In our
experiments, this yielded better results, possibly because
the number of particles necessary to estimate a larger state
space is growing exponentially. Although represented by a
(possibly multimodal) distribution, a single position of the
tracking target at the current time step is sometimes
required (e.g., for visualization or evaluation).

Motion model. To propagate the particles, we use a
constant velocity motion model

ðx; yÞt ¼ ðx; yÞt�1 þ ðu; vÞt�1 ��tþ "ðx;yÞ; ð2Þ

ðu; vÞt ¼ ðu; vÞt�1 þ "ðu;vÞ: ð3Þ

The process noise "ðx;yÞ; "ðu;vÞ for each state variable is
independently drawn from zero-mean normal distributions.

The initial variances �2
ðx;yÞ and �2

ðu;vÞ for position and velocity
noise are set proportionally to the size of the tracking target.
During tracking, they decrease inversely proportional to the
number of successfully tracked frames (down to a lower
limit). Hence, the longer a target is tracked successfully, the
less the particles are spread. �t is dependent on the frame
rate of the sequence.

For sequences with abrupt, fast camera motion (which
could be detected automatically), we apply the same motion
model but additionally employ the Iterative Likelihood
Weighting procedure [32]. To this end, the particles are
divided into two sets, from which the first set is propagated
normally. The particles from the second set are iteratively
propagated and weighted several times (in our case, three
times) to allow for more extreme particle movements within
one time step.

Initialization and termination. Object detection yields
fully automatic initialization. The algorithm initializes a
new tracker for an object that has subsequent detections
with overlapping bounding boxes which are neither
occluded nor associated to an already existing tracker. In
order to avoid persistent false positives from similar looking
background structures (such as windows, doors, or trees),
we only initialize trackers from detections that appear in a
zone along the image borders for sequences where this is
reasonable, such as for typical surveillance settings. This
was the case for most experiments in Section 4, where the
initialization region was comparable to Fig. 3 (left). For
sequences where targets appear in the middle of the image,
e.g., for shorter sequences (TUD Crossing) or for sequences
from moving cameras (UBC Hockey, Soccer), we initialized
on the entire image.

The initial sample positions are drawn from a normal
distribution around the detection center (Fig. 3, middle). The
initial size corresponds to the detection size, and the motion
direction is set to be orthogonal to the closest image border.

A tracker only survives a limited number of frames
without associated detection and is then automatically
terminated. However, to redetect a target that temporally
leaves and later reenters the field of view, the trackers are only
deactivated (c.f., [6]). Thus, instead of immediately initializ-
ing a new tracker, the algorithm checks first if the same target
has already been observed before. For this purpose, the
classifier of each deactivated tracker is evaluated.

3.3 Data Association

In order to decide which detection should guide which
tracker, we solve a data association problem, assigning at
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Fig. 2. Detector output (top: ISM [25], bottom: HOG [9]) showing high-
confidence detections (left, green rectangles) and the detector
confidence (right, shaded overlay). The confidence density often
contains useful information at the location of missing detections, which
we exploit for tracking.

Fig. 3. The initialization and termination region for a typical surveillance
scenario (left). The initial particles are drawn from a normal distribution
centered at the detection (middle). The weight of each particle is
determined by evaluating the respective image patch (right).



most one detection to at most one target. The optimal

single-frame assignment can be obtained by the Hungarian

algorithm [22]. In our experiments, however, we found that

a greedy algorithm achieves similar results at lower

computational cost.
Greedy data association. The matching algorithm works

as follows (see Algorithm 1): First, a matching score matrix S

for each pair ðtr; dÞ of tracker tr and detection d is

computed as described below. Then, the pair ðtr�; d�Þ with

maximum score is iteratively selected, and the rows and

columns belonging to tracker tr and detection d in S are

deleted. This is repeated until no further valid pair is

available. Finally, only the associated detections with a

matching score above a threshold are used, ensuring that a

selected detection actually is a good match to a target.

Consequently, the chances are high that often no detection

will be associated with a target, but if one is, it can be used

to strongly influence the tracker.

Algorithm 1. Greedy data association
T : set of all trackers

D : set of all detections

Sðtr; dÞ : scores for each tracker-detection pair,

Equation (4)

Aðtr; dÞ ¼ 0 : final associations of detection d to tracker tr

Require: 8tr 2 T :
P

i Aðtr; iÞ � 1

Require: 8d 2 D :
P

j Aðj; dÞ � 1

while T 6¼ � ^D 6¼ � do

ðtr�; d�Þ ¼ arg maxtr2T;d2DSðtr; dÞ
if Sðtr�; d�Þ � � then

Aðtr�; d�Þ ¼ 1

T ¼ fT n tr�g
D ¼ fD n d�g

Matching score. Our data association method evaluates

a matching function Sðtr; dÞ for each tracker-detection pair

ðtr; dÞ. The higher the score, the better the match between

detection and tracking target. It employs a classifier ctrðdÞ
trained for tr, which is evaluated for d:

Sðtr; dÞ ¼ gðtr; dÞ � ctrðdÞ þ � �
XN
p2tr

pN ðd� pÞ
 !

; ð4Þ

where pN ðd� pÞ � N ðposd � posp; 0; �2Þ denotes the normal

distribution evaluated for the distance between the position

of detection d and a particle p, and gðtr; dÞ is a gating function

described next. The last term of (4) measures the density of

the particle distribution, rewarding associations where the

particles are densely distributed around the detection.
Gating function. Not only the distance of a detection to

the tracker is important, but also its location with respect to

the motion direction. Therefore, a gating function gðtr; dÞ
additionally assesses each detection. It consists of the

product of two factors:

gðtr; dÞ ¼ pðsizedjtrÞpðposdjtrÞ ð5Þ

¼
pN

sizetr�sized
sizetr

� �
� pN ðjd� trjÞ; if jvvvvtrj < �v;

pN
sizetr�sized

sizetr

� �
� pN ðdistðd; vvvvtrÞÞ; otherwise:

8><
>:

The first normal distribution measures the agreement
between the bounding box height of target and detection.
The second normal distribution follows the intuition that
fast-moving objects cannot change their course abruptly
because of inertia. Therefore, the term depends on the
velocity of the target. If the velocity jvvvvtrj is below a
threshold �v, it is ignored and the term is proportional to the
distance from the center of the main mode of tracker tr to
detection d. In this case of a (almost) motionless target, the
function decays radially (Fig. 4).

Otherwise, the second term depends on the distance
between the detection d and the line vvvvtr ¼ ðu; vÞ given by the
position of the tracker and the direction component of the
velocity. The variance for this term is chosen such that it is
proportional to the distance from the tracker to the
detection projected to vvvvtr. Thus, a detection d1 with the
same distance to the line vvvvtr as another detection d2, but
which is closer to the tracker tr, gets a lower score. Hence,
the isolines of (5) then form a 2D cone (Fig. 4). Furthermore,
the higher the speed of the target, the smaller the angle of
the 2D cone.1

Boosted classifiers. To assess the similarity of a tracker-
detection pair, we use the algorithm from Grabner and
Bischof [17]. We train a boosted classifier ctr of weak
learners for each tracking target against all others during
runtime. Each weak learner represents a feature computed
for both a positive and a negative training image (see
Section 4.2 for a description of the features). For each
classifier, weak learners are selected using AdaBoost.
During evaluation, a classifier computes the similarity
between the input and all of its weak learners using a
k-Nearest Neighbor classification approach.

Positive training examples are patches sampled from the
bounding box of the associated detection (the sampling
probability is higher the closer a patch is to the vertical
center line). The negative training set is sampled from
nearby targets, augmented by background patches. The
classifier is only updated if a detection does not overlap
with another detection. After each update step, we keep a
constant number of the most discriminative weak learners.
Thus, the classifier is continuously adapted, becoming more
and more discriminative (Fig. 5). This framework has
several advantages: It allows us to include different
features, it automatically selects the most discriminative
feature set, and it provides a natural way to adapt to
appearance changes of the targets.

3.4 Observation Model

To compute the weight wtr;p for a particle p of the tracker tr,
our algorithm estimates the likelihood of a particle. For this
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Fig. 4. The gating function depends on the velocity of the target,
resulting in different 2D cone angles or a radial decay.

1. The second term of (5) is equivalent to an angular error that is correctly
measured by the Von Mises distribution, but can be closely approximated
by a Gaussian distribution in the 1D case [31].



purpose, we combine different sources of information,
namely, the associated detection d�, the intermediate output
of the detection algorithm, and the output of the classifier ctr:

wtr;p ¼ � � IðtrÞ � pN ðp� d�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
detection

þ � � dcðpÞ � poðtrÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
det: confidence

þ � � ctrðpÞ|fflfflfflfflffl{zfflfflfflfflffl}
classifier

;

ð6Þ

where the parameters �; �; � are set experimentally and
remain fixed during tracking (see Section 3.5). Each term is
described below in detail.

Detection term. The first term computes the distance
between the particle p and the associated detection d�,
evaluated under a normal distribution pN . IðtrÞ is an
indicator function that returns 1 if a detection was associated
to the tracker and 0 otherwise by the data association
procedure described in Section 3.3. When a matching
detection is found, this term robustly guides the particles.

Detector confidence term. The second term evaluates
the intermediate output of the object detector by computing
the detector confidence density dcðpÞ at the particle position.
To estimate dcðpÞ for the ISM detector, we compute the local
density � in the Hough voting space using a cubic kernel
adapted to the target size and scaled with f ¼ 1� expð��Þ
to ½0; 1�. For the HOG detector, dcðpÞ corresponds to the raw
SVM output before applying nonmaximum suppression,
which is also scaled to ½0; 1�.

Unfortunately, the detector confidence is not always
reliable; often, an erroneously high value is caused by
background structures (Fig. 2). To assess its reliability, our
algorithm therefore performs interobject occlusion reasoning
using the following rationale: If another tracker tr0 is nearby
that is associated with a detection, the detector confidence
at this image location and in its proximity is most probably
caused by the foreground and not by background structure.
Consequently, it is likely that the detector did not find both
targets because of the occlusion. In this case, we assume that
the detection confidence is meaningful in this image area
and can be used to guide the tracker. Hence, the function
poðtrÞ increases the influence of the detector confidence for
tracker tr in (6) the closer another tracker tr0 is

poðtrÞ ¼
1; if IðtrÞ ¼ 1;

max
tr0:Iðtr0Þ¼1

pN ðtr� tr0Þ; else if 9Iðtr0Þ ¼ 1;

0; otherwise:

8><
>: ð7Þ

Note that the region defined by pN is rather large, as shown
in Fig. 6, where the function is evaluated for person a

entering the scene from the right. Thus, the confidence map
is only completely ignored when no track passes by even
close to the corresponding image region, which is only
rarely the case in practice.

Classifier term. For the third term of (6), the classifier ctr
trained for target tr (Section 3.3) is evaluated for the image
patch at the particle location with the corresponding size
(Fig. 3, middle). This term uses color and texture informa-
tion to assess the new particle position and complements
the terms from the detector output. While other tracking
methods are purely based on such classifier output (e.g., [2],
[17]), this adds additional robustness to our particle filter
approach, especially during partial occlusions. In addition,
the combination of generic category knowledge and person-
specific information makes our approach more robust to
classifier drift.

3.5 Implementation

Detectors. For all experiments, we employ either the HOG
detector [9] or the ISM detector [25], which are publicly
available and not trained specifically for our tracking
scenarios (c.f., [7], [33]). We apply the provided ISM model
trained on side views of persons with size 80	 200 pixels,
operating on Hessian-Laplace interest points. The HOG
detector is trained on the INRIA Person Data set, resized to
48	 96 pixels for a better correspondence of the person size
in the test data.

Algorithm parameters. All parameters have been set
experimentally and most remained identical for all experi-
ments with different sequences. This was the case for the
variances �2 in (4-7), for � in (4), for � and � in (6), and for �
in Algorithm 1. Only � was increased for one sequence
(TUD Crossing, see Section 5) to overcome very long-lasting
overlaps between detections by the detector confidence.
�; �; � were chosen experimentally and set such that the
ratio between the respective terms in (6) is approximately
20:2:1 for a tracker with associated detection. Hence, if a
reliable detection is found, the first term of the observation
model mainly guides the particles, which is the case every
2-10 frames on average, depending on the sequence. During
a typical tracking cycle, the contribution of each of the
individual observation model terms to the total particle
weight can however differ significantly. We analyze the
influence of each term to the overall robustness in Section 5.

The initial target size corresponds to the size of the
detection (scaledet is the size compared to the detector
training size). The initial sample positions are drawn from a
normal distribution with standard deviation � ¼ 6 � scaledet
pixels, centered at the detection bounding box center. The
standard deviations for the position and velocity noise are
set to � ¼ 4 � scaledet and � ¼ 12 � scaledet pixels (i.e., about
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Fig. 5. The classifier response (heat map) visualized for one tracking
target (white). As the classifier is adapted continuously, it becomes more
discriminative (right: 20 frames later).

Fig. 6. Visualization of the detector confidence reliability function, which
returns a higher value for tracker a (right) if another tracker b with
associated detection is close.



10 and 30 pixels for a target with a height of 180 pixels
(scaledet ¼ 2:5)). The initial motion direction is set to be
orthogonal to the closest image border with magnitude v ¼
24 � scaledet pixels. To handle abrupt motion changes in
sports sequences, we increased �2 in (2)-(3) to make the
motion model more flexible.

4 EXPERIMENTS

4.1 Data Sets

There is no generally accepted benchmark available for
multiperson tracking. Therefore, most related publications
have carried out experiments on their own sequences,
which we have tried to combine. Thus, we evaluate on a
large variety of challenging sequences: ETHZ Central [26],
TUD Campus and TUD Crossing [1], i-Lids AB [18], [45],
UBC Hockey [7], [33], PETS’09 S2.L1-S2.L3 [12], ETHZ
Standing [14], and our own Soccer data set.2

These sequences are taken from both static and moving
cameras, and they vary with respect to viewpoint, type of
movement, and amount of occlusion. While some data sets
show rather classical surveillance and security scenarios
from an elevated viewpoint, others are captured at eye level
and are typical for robot/car navigation and traffic safety
applications, while some are sports sequences with abrupt
motion changes of the players and moving cameras. For all
sequences, we use only a single camera (c.f., [3]), we do not
assume any scene knowledge such as ground plane
calibration (c.f., [14], [26]) or scene-specific entry/exit zones
(c.f., [18]), do not employ an object detector specifically
trained for a certain application scenario (c.f., [7], [33]), and
process the sequences in a causal way (i.e., without using
information from future frames, c.f., [3], [14], [18]).

We use the detectors originally used with these
sequences: We employ the ISM detector for ETHZ Central,
TUD Crossing, TUD Campus, ETHZ Standing, and UBC
Hockey. For i-Lids, PETS’09, and Soccer, we use the HOG
detector since it is not only trained on side views of people,
in contrast to the ISM detector. For the PETS’09 data set, the
input images are resized from originally 768	 576 pixels to
1;280	 960 pixels, such that the size of the people better

corresponds to the detector training size (analogously for
the Soccer data set).

4.2 Classifier Features

To select features for the boosted classifier (i.e., number,
type, combination of features), we evaluate the ability of the
classifiers to distinguish between the correct target and all
others. To this end, we compare the classifiers on different
sequences using annotated ground truth. Ideally, the
classifier returns a score of þ1 for the target it is trained
for and �1 for all other targets. Hence, the larger the
difference between the classifier score for a correct and the
other targets, the better the classifier can distinguish
between them. In the Figs. 7a, 7b, 7c, and 7d, we plot the
difference of the classifier score on the annotated targets
and the highest score on all other targets.

We performed experiments with color histogram fea-
tures in RGB (red-green-blue), HS (hue-saturation), RGI
(red-green-intensity), and Lab space, and with texture
features LBP (local binary patterns) and Haar wavelets.
Each feature is computed on a patch with random size and
position, sampled from within the bounding box of a
detection or tracker main mode.

In Fig. 7a, we plot the score difference for 200 frames of
the TUD Crossing sequence[1], using 50 RGI color features
with 3 bins per color channel. The score difference is large
for most targets and throughout most frames. Importantly,
it is never negative, i.e., two targets are never mixed up.
Some targets are more difficult to distinguish than others
because of their (similar) clothing. The score difference
declines sometimes when a new target enters the scene
against which the other classifiers are not yet trained. Also,
when the appearance of a target changes (e.g., during a
partial occlusion), the classifier needs some time to adapt,
causing the performance to drop.

In Fig. 7b, we investigated the impact of different color
features on classification accuracy and speed, averaged over
all targets and frames. The accuracy increases if more bins
are used for the color histogram. However, the computation
time (including training and testing) also increases. As a
compromise, we chose the RGI feature with three bins per
color channel. Fig. 7c shows the evaluation for feature
combinations and numbers of features (i.e., weak learners).
We use 50 features per classifier. Fig. 7d shows the effect of
combining different features for different sequences. The
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2. The references indicate publications with state-of-the-art results.
Please watch our result videos: http://www.vision.ee.ethz.ch/showroom/
tracking.

Fig. 7. (a) Classifier evaluation on the TUD Crossing sequence with 50 RGI features and 3 bins per color channel. We plot the difference between the
classifier score on the correct target and the highest score on all other targets. (b) Evaluation of performance (left scale) and computation time (bars,
right scale) for different color features. (c) Evaluation of the number of features per classifier. (d) Evaluation of feature combinations for some data
sets.



combination of RGI and LBP features often outperforms
color or textural features alone and other combinations. We
use RGI and LBP features for all sequences.

4.3 Qualitative Analysis

ETHZ Central. The output of the ISM detector is very noisy
for the ETHZ Central data set (Fig. 8, top). The cars and
road markings produce many false positives, and pedes-
trians are often not detected. Only a few detections
consistently match the targets throughout the sequence
(e.g., the blue tracker in Fig. 8, bottom, gets assigned a
detection only every 30 frames). Thus, the trackers often
rely on the detector and classifier confidence. Furthermore,
there are many occlusions, e.g., when people walk in
parallel. Hence, the correct association of detections to
trackers is a key factor of our algorithm.

TUD Campus. The ISM detections are more accurate for
the TUD Campus data set. On average, a tracker is
associated with a detection in every second frame. Since
the different persons have different sizes, it is easier to
assign detections to trackers (Fig. 9a). However, many long
interobject occlusions occur, e.g., the cyan tracker fully
occludes four other people temporarily. During these
occlusions, the particles of the other trackers are attracted
by the high detector confidence around the cyan target until
the other targets reappear.

TUD Crossing. In contrast, most people in the TUD
Crossing data set have a similar size (Fig. 9b); thus, the
detection sizes are not useful to simplify data association.
Additionally, most people walk at similar speeds, so this cue
also cannot be used to resolve ambiguities. By increasing the
influence of the detector confidence term (i.e., � in (6), as
described in Section 3.5), all people are, however, success-
fully tracked through the long interobject occlusions.

AVSS i-Lids AB Medium. Due to the elevated camera
viewpoint, the persons occlude each other frequently, and
their visible sizes differ substantially (Fig. 9c). This makes
the sequence challenging for both the detector and the
tracker. The classifier and detector confidence terms are
therefore particularly important. They keep the particles
from drifting and locking onto other targets. Furthermore, a
persistent foreground object (a pillar) occludes many targets
immediately after entering the scene. This makes the
initialization more difficult, as the classifiers are trained
with only few samples before the target is occluded.
However, even though no scene-specific information is
used, the tracker manages to handle these problems in most
cases. The HOG detector causes many false positives when
many people enter the scene that are already partially

occluded (e.g., if a train arrives), making initialization
difficult. Because of these frequent interobject occlusions, a
part-based detector trained on individual body parts would
be advantageous for this sequence.

PETS’09. The PETS’09 data set is recorded from several
synchronized cameras, from which we only use one (view 1).
In contrast to the first task S2.L1, only two (predeter-
mined) targets need to be tracked for tasks S2.L2 and
S2.L3. Since our algorithm automatically initializes for all
detected targets, we manually select the corresponding
trajectories for the evaluation after running our algorithm
completely. In Figs. 9d, 9e, 9f, and Fig. 10, we show the
results and all trajectories, respectively.

For S2.L1, all people are tracked. The HOG detector finds
about 80 percent of all people throughout the sequence,
while about 50 percent of all detections are false positives.
Although the size of the targets changes significantly, no
identity switches occur (Fig. 10). Additional challenges are
the significant complete and partial occlusions caused by
the traffic sign and by other tracking targets, which are
handled robustly (Fig. 9d). Third, the motion of some
targets is highly dynamic, as they are suddenly stopping,
moving backward, or in circles. Over the whole sequence
(of about 90 seconds), our method returns four short false
positive trajectories (marked by the red arrows in Fig. 10),
which are caused by erroneously initialized trackers due to
persistent false positive detections at the image borders. For
most targets that temporally leave the field of view and
reenter the scene, the respective tracker can be reactivated
(e.g., in Fig. 9d, the purple target in the first and second
image and the cyan target in the third and fourth image).

The sequences S2.L2 and S2.L3 mainly pose two
additional challenges. First, target appearance changes
heavily, caused by different lighting conditions in different
image areas or when a target turns with respect to the
camera position. Second, the people in the crowd walk very
closely together, regularly occluding each other. Our
algorithm manages to robustly handle most of these
problems. As can be seen from Fig. 10, one target person
leaves and later reenters the scene. Here, the respective
tracker could not be reactivated because the classifier score
is too low.

In Fig. 11, we show a sequence of frames to illustrate
how the algorithm handles situations with severe occlu-
sions (top: S2.L1) and appearance changes (below: S2.L2).
First, all trackers are associated with a detection (Fig. 11a,
top). The person represented by the blue tracker then moves
toward the road sign and becomes occluded (Fig. 11b).
Since no detection is available, the particles propagate
toward nearby areas of high detector confidence (i.e., to the
target of the red tracker). After 50 frames, the person
reappears from behind the road sign (Fig. 11c) and is
represented by the respective tracker again (Fig. 11d),
thanks to the classifier. In the second example (Fig. 11,
bottom), the blue person is occluded (Fig. 11b) while
entering a brightly illuminated image area, thus changing
his appearance. As a result, the classifier is not updated and
does not adapt. However, because of the particle filter’s
multimodality, some particles remain on the correct target
(Fig. 11c) and the tracker recovers (Fig. 11d).
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Fig. 8. Result for the ETHZ Central data set (top: final ISM detections
(green) and detector confidence (heat map)), tracking result (bottom).



UBC Hockey. In contrast to the typical pedestrian
sequences shown before, sports videos impose additional
difficulties to a tracking algorithm. First, the camera is
usually not static, i.e., it is not clear from the 2D image
information alone whether the motion is caused by camera

movement or by a moving target. Second, player motion
may change more abruptly, which makes data association
more challenging. Furthermore, the hockey players’ ap-
pearance differs substantially from the data set used to train
the detectors. The final detections are therefore very
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Fig. 9. Tracking output on the (a) TUD Campus, (b) TUD Crossing, (c) AVSS i-Lids AB Medium, (d) PETS’09 S2.L1, (e) S2.L2, (f) S2.L3, (g) UBC
Hockey, and (h) Soccer data sets. For visualization purposes, the shown trajectories are computed by averaging over the last three positions of the
tracker bounding box. However, only the bounding boxes are used for evaluation.



unreliable, and the detector and classifier confidence is
primarily used for tracking. Although the players’ appear-
ance (i.e., their jersey color) is very similar, mismatches are
avoided thanks to the gating function used for data
association (Section 3.3).

Soccer. In an even more challenging setting, the Soccer
data set was recorded with a strongly moving camera that
additionally zooms in. The player sizes therefore change
considerably (Fig. 9h). The players are interacting and look
similar, making data association difficult. Fortunately, two
nearby targets are often from rival teams, hence the colors
of their jerseys are different. As can be seen from Fig. 9h, the
classifiers are not very robust in the beginning of the
sequence, causing identity switches. However, after a while,
the tracker finds and differentiates all targets, even during a
fast pan of the camera.

ETHZ Standing. Fig. 12 (bottom) shows the result for the
ETHZ Standing sequence, illustrating the limitations of the
method. The ISM detector confidence is very high on
background structures (Fig. 12, top), producing regular
false positive detections. Hence, the trackers fail to robustly
find the targets after the long occlusions or they are not
properly terminated and drift to these image regions. Here,
scene knowledge or depth information probably is neces-
sary for robust tracking (as used by others, e.g., [14]).

Summary. We have demonstrated on a variety of
sequences that the tracker robustly handles different
challenges. The remaining failures occur mainly when the
detector output is extremely noisy during initialization,
termination, and long occlusions. Other cases are when
partially occluded targets enter the scene or when the
appearance of a target changes while it is not detected (e.g.,
during an occlusion).

4.4 Quantitative Analysis

We use the CLEAR MOT metrics [4] to evaluate the tracking
performance. This returns a precision score MOTP (inter-
section over union of bounding boxes) and an accuracy
score MOTA (composed of false negative rate, false positive
rate, and number of identity switches). The results for the
sequences discussed in Section 4.3 are shown in Table 1.3,4,5

Where available, the results of the state-of-the-art methods
are also shown.

As for the precision (MOTP), we consider a score of above
50 percent as reasonable for tracking. The same threshold is
used to accept detections for the prominent Pascal VOC
challenge [34]. The accuracy (MOTA) consists of the false
negative (FN) and false positive (FP) rate, and the number of
identity switches (ID Sw.). The false negatives occur when
persons are annotated but not detected. This happens for
people who are very close to another person (ETHZ Central,
TUD Crossing), who are sitting (ETHZ Central), or who are
partially outside of the image (i-Lids). False positives are
caused by trackers that drift during an occlusion (e.g., due to

the pillar in i-Lids) or that lose their target (e.g., due to strong
camera motion in the Soccer data set). If a target leaves the
scene while a new target enters, the tracker may switch their
identities, which happens only rarely thanks to the online
trained classifiers. The remaining identity switches are due
to cases where a person who was only shortly visible is
occluded (e.g., in i-Lids) or for newly appearing people with
similar appearances who are close together (e.g., in Soccer).
In these cases, the motion model and classifier for the targets
are not yet sufficiently adapted. A low number of ID
switches is one of the most important properties of a good
tracking algorithm.

We compare our method with the state-of-the-art results
reported for these sequences (Table 1): on ETHZ Central
with Leibe et al. [26] (using provided trajectories), on UBC
Hockey with Okuma et al. [33] (obtained using their
publicly available Matlab code on their data), and on i-Lids
as reported by Huang et al. [18] (see footnote 3). In all of
those cases, our precision and accuracy results outperform
the previously published results even though our algorithm
does not use global optimization (c.f., [18], [26]), nor a
detector specifically trained for the appearance in the
sequence (c.f., [33]), camera calibration (c.f., [26]), or a scene
model (c.f., [18]).
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3. The authors in [18] did not report all CLEAR MOT evaluation
numbers. We tested on i-Lids Easy and the first half of i-Lids Medium, for
which we added annotations for fully visible, sitting people, reported as i-
Lids Medium*. For the second half, many people are only partially visible,
and the HOG detector therefore did not yield reasonable results. In contrast,
[18] used the part-based detector of [45], which works better for such
situations but is not publicly available. Thus, a direct comparison is not
possible.

4. Without reusing previous trackers for reentering targets, from [5].
5. The numbers are extracted from Fig. 3 of the PETS 2009 report [12].

Fig. 11. Particle filter output (particles and main modes) and HOG
detections (green) for PETS’09 S2.L1 (top) and S2.L2 (bottom). The
tracking algorithm recovers after the occlusion (top) and the appearance
change (bottom).

Fig. 10. The resulting trajectories for the PETS’09 tasks S2.L1, S2.L2,
and S2.L3 (false positives denoted by red arrows).

Fig. 12. For the ETHZ Standing data set, the trackers often in the right
part of the image (bottom), because the ISM detector confidence is very
high on background structures (top).



The evaluation of the PETS’09 tracking results was

performed by the organizers of the workshop [12], who

did not provide the scores for FN, FP, and ID switches.

Surprisingly, our algorithm outperforms the multicamera

system of Berclaz et al. [3] in terms of accuracy, even though

the latter uses five camera views, scene-specific knowledge

(a ground plane), and delivers the results with a temporal

delay. As expected, Berclaz et al. achieve a slightly higher

precision score. Our method also outperforms the well-

engineered system of Yang et al. [47] that is based on

background modeling and relies on a static background. As

shown in Table 1, the accuracy score drops by about

5 percent when trackers are immediately terminated and

not reused for reentering targets (due to the higher number

of identity switches).
Summary. Both the accuracy and precision of our

method are reasonably high. The algorithm outperforms

other state-of-the-art methods, even though many of them

rely on simplifying assumptions or additional information,

limiting their applicability. Our method relies only on

information from the past and is thus suitable for time-

critical, online applications.

4.5 Runtime Performance

The entire system is implemented in C++, without taking

advantage of GPU processing. On a workstation with an

Intel Core2Duo 2.13 GHz and 2 GB of memory, we achieve

processing times of 2-0.4 frames per second (given the

detector output), depending on the number of detections

and targets in a sequence. While the current bottleneck is

the detection stage, we want to point out that for the HOG

detector, real-time GPU implementations exist [37], [44]. As

not all speedup possibilities are explored yet, the current

runtime raises hope that real-time experiments will not be

too far away.

5 DISCUSSION

We first discuss how the different observation model
terms assist in handling difficult situations. Then, the
influence of each term is evaluated quantitatively. Third,
we demonstrate the contribution of the particle filter. Last,
we show how tracking performance varies when relying
on discrete detections.

Handling difficult situations. In Figs. 13a, 13b, 13c, and
13d, we show the detector output (top), classifier output for
one target (middle), and particle filter output (bottom) for
frames 18, 105, 151, and 175 of the PETS’09 S2.L3 sequence.
In Fig. 13a, good detections are available as both tracking
targets are fully visible (top). Two trackers (yellow, magenta)
have been initialized, and detections are associated to them
(bottom), hence primarily guiding the trackers.

In contrast, one target is fully occluded by the other in
Fig. 13b. The detection is associated to the correct tracker
(magenta, bottom). The particle weights for the yellow
tracker are primarily computed from the detector con-
fidence since another tracker (magenta) is nearby and
associated with a detection, keeping the particles from
drifting (Fig. 13, bottom).

Occasionally, as in Fig. 13c, the target of the yellow
tracker becomes partially visible. However, the detector
cannot accumulate enough evidence to detect the target,
and it issues many detections on the approaching crowd
(top). The data association algorithm manages to distin-
guish between the targets using the classifier. Thus, the
detections are not wrongly associated to the yellow tracker,
preventing the algorithm from switching identities. More-
over, the yellow tracker accurately locates the partially
visible target (bottom), thanks to the classifier confidence
output (middle). The particles are guided temporally by the
detector confidence (Fig. 13, top) until a high-confidence
detection is associated again (Fig. 13d).

In such situations, both a pure classifier-based tracking
approach (e.g., [2], [17]) and a pure detector confidence-
based approach (e.g., [8], [27], [46]) would probably fail,
resulting in lost targets and identity switches.

Robustness of observation model. We demonstrate the
influence of each observation model term by evaluating all
possible combinations of terms on the ETH Central data set.
To this end, the respective weights �; �; � in (6) were set to
zero, while the others remained identical. Table 2 and the
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Fig. 13. Visualization of detector output (top), classifier output for the
yellow target (middle), and particle filter output (bottom; dashed
bounding boxes are detections associated to the tracker with the
respective color).

TABLE 1
CLEAR MOT [4] Evaluation Results, Showing Precision

(MOTP), Accuracy (MOTA), False Negative Rate (FN), False
Positive Rate (FP), and the Number of ID Switches (ID Sw.),

Where Available State-of-the-Art Results Are Also Shown



respective rows in Fig. 14 show the results (Table 2a repeats
the original result from Fig. 8).

Overall, the performance is highest when using all terms,
and it decreases the more terms are removed. When
removing the classifier term, three effects can be observed
(Table 2b, Fig. 14b): Target localization is not as precise as
before; some targets are lost (e.g., the blue tracker), which
increases the false positive and false negative rates; and the
number of identity switches increases as new trackers are
initialized for lost targets. If the detector confidence term is
removed instead (Fig. 14c), the number of false negatives is
higher. In contrast, the number of identity switches and
false positives remain lower as the classifier confidence
helps distinguish the targets. Table 2d and Fig. 14d show
that without the discrete detections, more targets are
missed, while the precision of the targets that are tracked
remains quite high.

When relying only on the discrete detections alone, the
tracker fails regularly, especially in the case of frequent
occlusions and ambiguities (Fig. 14e). The number of false
positives is lower (Fig. 14f) when using only the detection
confidence instead, as the tracker is not immediately
misguided by wrong detections. However, the tracker hardly
recovers after failure. Finally, the performance is lowest
when relying on the classifier term alone (Fig. 14g), probably
because the classifiers are primarily trained to distinguish
between the tracking targets, not between background and
targets.

Number of particles. To demonstrate the contribution of
the particle filter, we evaluate the algorithm on the ETH
Central data set and decrease the number of particles N
from originally 100 to 25, 15, 10, 5, and 1. As can be seen
from the results in Tables 2h, 2i, 2j, 2k, and 2l, especially the
false positive rate and the number of identity switches
drastically increase, as many targets are lost and thus new
trackers are initialized. Therefore, the capability of a
particle filter to estimate a multimodal distribution seems
to be important for correctly tracking targets in such
challenging scenarios. Although other, probably more
powerful statistical frameworks exist, we refer to specific

papers on this topic, as a detailed evaluation of different
frameworks is beyond the scope of this paper.

Trust in detections. As described in Section 3.5, our
algorithm uses only a few discrete detections for tracking.
Since the detector output is often very noisy and thus not
reliable, our algorithm aims at selecting those detections
that are a good match. In Tables 2m and 2n, we show how
tracking performance varies as a function of the detection
threshold � from Algorithm 1 (all other experiments are
carried out with � ¼ 1). As more detections are associated to
trackers by decreasing � to 0.5 and 0.2, the number of
misguided trackers increases, which can be seen from the
false positive rate.

6 CONCLUSION

We have presented a novel method for online multi-object
tracking-by-detection, exploring the capabilities of an
approach that relies only on 2D image information from
one single, uncalibrated camera, without any additional
scene knowledge. The main challenge for tracking algo-
rithms is unreliable measurements, i.e., in the case of
tracking-by-detection, false positives, and missing detec-
tions. The contribution of our work is thus to explore how
this unreliable information source can be used for robust
multiperson tracking. The key factors of our algorithm are:
1) careful selection and association of final detections using
target-specific classifiers trained during runtime, 2) utiliza-
tion of the continuous output of detector and classifier, and
3) robust combination of unreliable information for multi-
person tracking using particle filtering.

While the data association algorithm handles false
positive detections, different observation model terms help
overcome problems with missing detections. They are
complementary, as they are trained on different features
and training data. While instance-specific information is
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TABLE 2
CLEAR MOT Evaluation Results on the ETHZ Central Data Set,
Using (a)-(g) Different Observation Models (See Also Fig. 14),
(h)-(l) Different Numbers of Particles N for a Tracker, or (m)-(n)
Different Values for Parameter � for the Original Result (a), the
Complete Observation Model and the Parameters N ¼ 100 and

� ¼ 1 are Used

Fig. 14. Tracking output on ETHZ Central with different observation
models, according to Table 2 (original result in Fig. 8).



beneficial to resolve ambiguous situations between different
targets, class-specific knowledge helps differentiate be-
tween object and background.

For this purpose, the detector confidence term guides the
particles of the filter primarily when no discrete high-
confidence detection is issued by the detector. Although
this is beneficial for situations with missing detections, it
can also misguide trackers to image areas with high
confidence on background structures. On the other hand,
the classifier term helps localize particles more accurately,
adapting online to the appearance of the targets. However,
the classifier requires some amount of training data to work
reliably and hence neither helps in situations shortly after
initialization nor if the appearance of a target changes
heavily during occlusions.

Our experiments have shown that the method achieves
good performance on a large variety of application
scenarios, outperforming other state-of-the-art algorithms,
some of which rely on scene-specific information, multiple
calibrated cameras, or global optimization. To increase the
robustness during partial occlusions, a part-based detector
would be beneficial. Also, the detector could be trained for
specific applications and the motion model could be
specialized, e.g., for applications in sports television broad-
casting. Furthermore, if applied to a specific scenario, scene-
specific information could be used to help resolve ambi-
guities, restricting motion to a ground plane or providing
information about obstacles. Finally, the method could be
enhanced by taking advantage of a more sophisticated
estimation framework than particle filtering.
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