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ABSTRACT
We study the feasibility of solving the challenging problem of geo-
localizing ground level images in urban areas with respect to a
database of images captured from the air such as satellite and oblique
aerial images. We observe that comprehensive aerial image databases
are widely available while complete coverage of urban areas from
the ground is at best spotty. As a result, localization of ground level
imagery with respect to aerial collections is a technically important
and practically significant problem. We exploit two key insights:
(1) satellite image to oblique aerial image correspondences are used
to extract building facades, and (2) building facades are matched
between oblique aerial and ground images for geo-localization. Key
contributions include: (1) A novel method for extracting building
facades using building outlines; (2) Correspondence of building
facades between oblique aerial and ground images without direct
matching; and (3) Position and orientation estimation of ground
images. We show results of ground image localization in a dense
urban area.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Feature eval-
uation and selection; I.4.9 [Image Processing and Computer Vi-
sion]: Applications; I.5.4 [Pattern Recognition]: Applications—
Computer vision, signal processing

General Terms
Algorithms, Theory

1. INTRODUCTION
Given a ground level street view (SV) image in an urban area,

we want to determine the geo-location of the camera in the absence
of any metadata (GPS or camera parameters). We explore a novel
approach: use commonly available satellite and oblique aerial im-
age databases (e.g. Microsoft Bing [bing.com/maps], Google Maps
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[maps.google.com]) to match the SV image and in turn geo-locate
the SV image. This problem is technically challenging and has not
been addressed before, and practically satellite and aerial databases
provide comprehensive coverage of large areas whereas SV databases
are spotty at best.

Given an area-of-interest (AOI) such as a city, we create a fea-
ture database using both satellite (SAT) and oblique bird’s eye-view
(BEV) imagery covering the area. SAT provides orthographic top-
down views of the scene while BEV provides oblique viewpoints.
By combining the two, building outlines as well as building facades
are extracted. SAT images provide the outlines while one or more
of the BEV images are used to locate the corresponding buildings
and extract facades. Appearance matching between images with
widely different viewpoints (e.g. SV and SAT) is a challenging
problem. Prior work using SIFT, MSER etc. has a low success
rate, and is not robust to partial occlusions and appearance differ-
ences. Also matchable features must be discriminative enough for
retrieval from a large database of indexable features along with the
geo-coding (latitude-longitude) information in the BEV imagery.
We approach the matching problem from a joint statistical and ap-
pearance viewpoint. We compute features that capture the statisti-
cal self-similarity (or dis-similarity) of local patches on a building
facade with respect to other patches on the facade. Since these fea-
tures essentially capture the local appearance statistics, they are ro-
bust to viewpoint and global appearance changes and can be com-
puted in a similar manner for the SV image as well and then ro-
bustly matched with the features stored in the database.

Related Work: In [16] and [12], a street view image is matched
to geo-tagged street view images. Chung et al. [2] extract MSER
regions that are clustered to build adjacency matrices for match-
ing with spectral graph approach. In [1], omnidirectional views are
matched to building outline maps by detecting the tallest vertical
corners of the buildings and matching them through 2D to 1D pro-
jection. Coorg & Teller [3] used vertical facades in combination
with GPS and inertial sensors, to determine building orientations.
Kosecka & Zhang [7] use facades to compute accurate camera ori-
entation. The facades themselves are detected either by reasoning
about their vertical projections [8] or by directly detecting lattice
patterns after searching for repetitive features or image structure
[10, 4, 6, 13, 9] followed by geometric or appearance-based valida-
tion. Schindler et al. [14] automatically geo-localize street images
by matching repeated patterns on building facades. Recently, Park
et al.[11] have focused on recovering the camera direction of a geo-
tagged street image using either street views or satellite imagery.
However, they rely on segmenting ground plane in the satellite im-
agery.
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Figure 1: Overall system block diagram.

2. APPROACH
Fig. 1 depicts the flow of key processing modules in our ap-

proach. First, we align the ground plane between SAT and BEV
imagery. Thus, BEV images can be rectified with respect to the
ground plane with canonical axes (N-S, E-W) aligned. Then, we
match building outlines extracted from SAT imagery with the cor-
responding outlines in the rectified BEV images. Subsequently,
we use the identified building outlines to find the roofs of build-
ings thus identifying the facades. This allows extraction of ortho-
rectified building facades from the BEV. Features that capture fa-
cade self-similarity are then extracted and stored in an adaptive vo-
cabulary tree that hashes these features on the basis of mutual simi-
larity. At run-time, for a query SV image, we first extract an ortho-
rectified dominant facade region and then compute self-similarity
features which are queried against the database to obtain a match-
ing facade and its geo-location. Finally, point correspondences be-
tween the SV image and the BEV image for the identified location
and direction are used to compute the 6 DOF pose of the SV camera
using standard techniques.

2.1 Alignment
Input Imagery: We download both the overhead SAT and the

oblique BEV imagery using Microsoft’s Bing Web service. For
computational management, each of these image types are down-
loaded as fixed size tiles, typically 100 meter square. Additionally,
for both image types, we use the Web service to establish a map
between pixel locations and their lat-long coordinates. For exper-
iments in this work, we downloaded imagery for a 1Km × 1Km
region in Ottawa, Canada. A few samples are shown in Fig. 2.

Imagery Alignment: Given the set of SAT and BEV image
tiles and the mapping of their pixel coordinates to lat-long coordi-
nates, we can warp the BEV images to the SAT coordinate system.
To compute the warping transformation, we approximate it as a
projective transformation between pixels in SAT and BEV – thus
approximating the Earth’s surface within each tile as a flat plane.
Using the computed transformations, we warp each of the images
to the SAT image coordinate system. As a result, the ground plane
gets aligned well in all the images as shown in Fig. 3. To aid fur-
ther processing, we also compute the dominant city block direction
in the SAT imagery and rotate this image before warping the other
images to its coordinate system. This renders most of the build-
ings parallel to the scan-lines in the image – a feature which will be
exploited in further processing.

2.2 Facade Extraction
After initial imagery rectification, we extract regions from the

BEV imagery corresponding to building facades. To ensure least
distortion, we concentrate only on the facade planes which face
the heading direction of the particular BEV image. Since the SAT
imagery was previously rotated to align the city blocks with the
image scan-lines, we can now restrict our attention to facade planes
whose 2D projections are horizontal in the SAT images.

Figure 2: Sample SAT tiles (left) and BEV imagery (right) from
Ottawa, Canada.

Figure 3: SAT image rotated to align city-block direction with
the x-axis (left) and the corresponding BEV image automatically
aligned to the SAT image w.r.t the ground-plane using the geo-
coordinate information (right).

Figure 4: Example of the facade extraction process. a) detected
building tops and bottoms, and b) extracted facade tiles.

Vertical Vanishing Point Estimation: In the ground-aligned
BEV imagery, lines along the vertical (gravity) vanishing direction
can be seen to be convergent. Before extracting affine corrected
facades, we first rectify the BEV imagery so that these lines are
rendered parallel. We detect canny edges in the BEV image and
then group these edges into line segments. Lines along horizontal
and vertical directions correspond to city block axes and can hence
be rejected. From the remaining line segments, a RANSAC-based
process then determines the inlier set of lines that intersect at the
required vanishing point.

Image Rectification: Given the computed vanishing point, we
now rectify the BEV image by mapping this vanishing point to a
point at infinity (in particular to vx = [1, 0, 0]t), thus making the
building edges parallel. This rectifying transformation is a projec-
tive warp which is computed by a method similar to the epipolar
rectification method described in [5]. Due to the choice of vx, the
building facade edges in the rectified BEV become parallel to the
image scan-lines.

SAT Edge Extraction: To extract building facades from BEV,
we start by detecting building contours in the overhead SAT im-
agery. The contours need to be detected as chains of line-segments,
each segment corresponding to one face of a building. We devel-
oped an iterative algorithm to extract these line segments from an
initial canny edge-detector processed SAT image. Briefly, the al-
gorithm links edges into edge-chains based on proximity and then
fits line segments to these edge-chains, splitting wherever the de-
viation of the edges from the fitted line segment becomes greater
than a threshold. Consistent line segments are merged into longer
line segments and the overall process is iterated a few times.

Facade ROI Search: From the line segments extracted in the
SAT imagery, we keep only the segments along the dominant fa-
cade direction in the BEV. Using the ground plane homography
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Figure 5: Building top search. Line segments extracted from the
SAT imagery are projected to the canny edge map of BEV where
a sweep along the gravity direction is expected to give a maximal
point at the top edge of the building.

between SAT and BEV, we warp these segments into the rectified
BEV image coordinate system. These segments then map to ap-
proximately the bottom of the buildings in the BEV image because
the transformation corresponds to the ground plane. In the rectified
BEV imagery, the gravity vanishing direction is aligned with the
scan lines and therefore the tops of these buildings can be found by
sliding the mapped line segments horizontally (Fig. 5). Our algo-
rithm to determine the building tops is described below. Once the
building tops are determined, we obtain the coordinates of the four
corners of each facade which can then be mapped back to the origi-
nal (unrectified) BEV imagery for high-resolution texture retrieval.
For each facade, we crop the texture from the original BEV im-
agery and then warp it into a rectilinear coordinate system. Fig. 4
shows an example of this process where a few of the facades are
extracted and rectified to their orthographic representations.

Computation of Building Tops using GC: Given the nature of
the rectified BEV imagery, the top of each building can be deter-
mined as a translation δ(s) for each segment s projected to the
building bottom. We formulate this problem as a Graph Cut (GC)
optimization of an objective function that consists of the usual data
and smoothness costs. The data cost for a line segment is strictly a
function of the hypothesized translation and is computed by mea-
suring the average edge strength in the rectified BEV image when
the line segment is translated by this value. Thus, when the seg-
ment lands on the top of a building, we incur a lower cost due
to the high edge strength. To ensure smoothness in the transla-
tion values for connected line segments, we add a smoothness cost
that penalizes difference in translation values for line segments that
are spatially close to each other at their endpoints. For the typical
polygonal chains of line segments that we detect for each build-
ing, the smoothness cost enforces a strong constraint that the entire
building top be at a single translation and avoids the problem of
local optima occurring at the numerous edges in the middle of the
building facade. Fig. 6 shows an example of how this optimization
approach helps the building extraction process.

2.3 Feature Detection & Matching
We represent each rectified facade with appearance features that

are extracted over a uniformly sampled grid on the facade. Features
from all the facades populate a feature database. We extract a simi-
lar set of features for a SV query image. Best matches between the
query features and the database features are used to index facades
in the database. The location corresponding to the best matching
facade are used used to estimate the location and orientation of the
coordinates of the query image.

Features: Features like MSER and SIFT do not work well for
matching between the BEV and SV imagery due to their large
viewpoint and appearance differences. We observe that even un-
der large appearance and viewpoint changes, the layout of local
patches within each facade can be used to create a statistical de-
scription of the facade pattern. Such statistical descriptions do not

Figure 6: Effect of Graph-Cuts Optimization. The green edges
are the SAT edges directly projected to this view and they lie in
the ground plane. The red edges are the estimated building top
edges. The top row shows the estimates obtained by picking the
maximum score for each edge pixel independently; the bottom row
shows these estimates refined by the GC optimization.

Figure 7: Self-similarity descriptor computation (top row), and ex-
ample self-similarity descriptors for corresponding facades from
the SV and BEV images respectively (bottom row).

get affected by the appearance and viewpoint changes as described
by Shechtman et. al [15].

For a given pixel q, the local self-similarity descriptor dq is com-
puted by defining a patch centered at q and correlating it with a
larger surrounding image region Rq to form a local ‘correlation
surface’ (Fig. 7 top row) which is then transformed into a binned
log-polar representation to account for local spatial affine deforma-
tions. For details, please refer to [15]. The bottom row of Fig. 7
shows rectified facades from corresponding SV and BEV images
with the red ROI showing the region of support used for comput-
ing the self-similarity descriptor at the red pixel in the center. Also
shown are the corresponding descriptors (computed at the center of
the red ROIs, Rq) which are noticeably quite similar even with the
large appearance difference between the images themselves.

Feature Detection: A single building facade may consist of
multiple patterns at different scales. This variation is best captured
by the self-similarity descriptor evaluated at the proper scale. We
sample a uniform grid of points on the facade and extract the self-
similarity descriptor at each of these points at a fixed set of scales.
All the descriptors thus obtained are labeled with a unique number
which we will refer to as the ID of the given facade. We repeat this
process for each facade in our dataset and the descriptors are thus
labeled with unique IDs equal in number to the number of facades.

Feature Matching: For scalable data retrieval using the self-
similarity features, we use an Adaptive Vocabulary Tree (ADT). We
push each of the feature vectors from each facade with the unique
ID as the associated label into an ADT data structure. The ADT
hashes the feature vectors according to the frequency of the IDs
and the co-occurrence of the dimensions of the features resulting in
a tree structure (Fig. 8). This tree structure is the database which
we use at run-time for query search as described next.
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Figure 8: Self-similarity descriptor features extracted from various
facades get pushed into an ADT data-structure.

Figure 9: Online processing of a SV image from Panoramio. Ex-
tracted and rectified facade returns these top three matching facades
from the database. Using the top match, we estimate the camera
pose (the point with the emanating rays) and compare it with the
ground-truth location (red circle).

2.4 Query Processing & Pose Estimation
At run-time, we first rectify the query SV image by computing

the vanishing points in the horizontal and vertical directions, and
then extract any facade occupying a substantial portion of the im-
age. For extracting the facades, we exploit the dominance of hori-
zontal and vertical facade patterns; we compute HoG descriptors at
a uniform sampling of pixels in the image and then cluster the re-
sulting descriptors using K-Means. Self-similarity features are then
extracted on a uniform grid like for the BEV image. These features
are queried against the ADT database which returns matching can-
didates as the top few best matches. The score differential between
the top two hits gives us an estimate of the confidence in the re-
trieval. If the retrieval is confident, we proceed to the geometric
localization step with the best match; otherwise, we process both
matches for pose estimation and use geometric consistency to prune
out the bad match.

Pose Estimation: Facade matching is in itself good enough to
localize the SV image within a constrained visibility zone defined
by the facade. However, for precise localization of the SV camera
we compute the 6 DOF pose of the camera to establish the effi-
cacy of our method. We manually identify 7 point correspondences
between the SV and BEV image in the structure surrounding the
matched facade. These correspondences are used to estimate the
fundamental matrix F [5] between the SV and BEV images. The
epipole of the BEV image, as computed from F , then corresponds
to the SV camera location in the BEV coordinate system.

The SV camera location in the BEV image is mapped to absolute
lat-long coordinates using the ground plane correspondence with
the SAT imagery. Finally, the metric (cms/pixel) information in the
SAT image is used to estimate the camera focal length which can
be used in conjunction with any knowledge about the CCD array
dimensions to establish the camera field-of-view as well.

3. EXPERIMENTAL RESULTS
We tested our system on a region around Ridieu St. in Ottawa,

Canada with a sample shown in Fig. 2. We used BEV imagery
from the west and south heading directions to capture facades as
seen from these two directions. For the test imagery, we used im-
agery from Panoramio and screen-shots from Google Street-view
both of which contain lat-long information. Fig. 9 shows an exam-

Figure 10: Localization Results. Yellow boxes: input SV images,
Red boxes: top 3 facade matches, and estimated and ground-truth
pose on the BEV for each input.

ple processing flow for a query SV image from Panoramio. The
scores for the top three BEV facade matches shown were 5632.0,
1452.0 and 290.0 respectively. The magnitude difference between
the first and second score suggests a good degree of confidence in
the match. Pose estimation using the matched facade then gives
us the final camera location of the SV image which is also shown
in the figure along with the ground-truth location depicted as a red
circle with a yellow center. Fig. 10 shows results on four more ex-
amples, the right column queries being screen-shots from Google
Street-view.

In summary, this work establishes the feasibility of matching
highly disparate street view images to aerial image databases to
precisely geo-localize SV images without the need for GPS or cam-
era metadata. In future work we plan to establish the quantitative
efficacy of our method through large city-scale experiments.
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