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Abstract We present a novel mixture of trees probabilis-
tic graphical model for semi-supervised video segmentation.
Each component in this mixture represents a tree structured
temporal linkage between super-pixels from the first to the
last frame of a video sequence. We provide a variational infer-
ence scheme for this model to estimate super-pixel labels,
their corresponding confidences, as well as the confidences
in the temporal linkages. Our algorithm performs inference
over full video volume which helps to avoid erroneous label
propagation caused by using short time-window processing.
In addition, our proposed inference scheme is very efficient
both in terms of computational speed and use of RAM and so
can be applied in real-time video segmentation scenarios. We
bring out the pros and cons of our approach using extensive
quantitative comparisons on challenging binary and multi-
class video segmentation datasets.
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1 Introduction

Modelling frame to frame correlations is one of the most
important components in a video model. These correlations
help propagate semantic labels through the video sequence
for joint tracking and segmentation approaches. The standard
approach is to use frame to frame optic flow (Fathi et al.
2011; Grundmann et al. 2010; Lee et al. 2003) to build the
temporal structure of the video. Some also use long term
point trajectories (Brox and Malik 2010; Lezama et al. 2011)
to build a sparse temporal structure.

It is well recognised that the use of optical flow is inef-
ficient for temporal propagation of semantic labels (Chuang
et al. 2002; Chen and Corso 2010; Badrinarayanan et al.
2010) due to ineffective occlusion handling and label drift
caused by round-off errors. To some extent these problems
can be overcome by using long term point trajectories, but
robust trajectories are sparse and often an additional group-
ing step is required for segmentation (Lezama et al. 2011;
Brox and Malik 2010). These problems combined with costly
multi-label MAP inference in video volumes has led to the
use of short overlapping time window based segmentation
methods (Tsai et al. 2010). To address these issues, we have
developed a new super-pixel based mixture of trees (MoT)
video model. Our model alleviates the need to use short time
window processing and can deal with occlusions effectively.
It requires no external optic flow computation, and instead,
infers the temporal correlation from the video data automati-
cally. We provide an efficient structured variational inference
scheme for our model, which estimates super-pixel labels
and their confidences. Furthermore, the uncertainties in the
temporal correlations are also inferred (which reduces label
drift), unlike the joint label and motion optimisation method
of Tsai et al. (2010) where only a MAP estimate is obtained.
Our work is partly motivated by the segmentation frame-
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Fig. 1 An illustration of multi-class semi-supervised video segmen-
tation results on a challenging sequence from CamVid (Brostow et al.
2009) dataset. (a) shows some sample frames and (b) the corresponding
ground truth labels. Our proposed algorithm achieves similar accuracy
(see Table 2) to the algorithm of Budvytis et al. (2011), yet is about

two orders of magnitude faster and requires two orders of magnitude
less RAM. Note that pixels which are uncertain are replaced by their
original RGB values in (c, d). The marginal posteriors of super-pixels
are shown in (e) (Color figure online)

work presented in Budvytis et al. (2011), Badrinarayanan et
al. (2013) which relies on a tree structured video time-series
model for semi-supervised video segmentation. The key dif-
ference with our proposed algorithm lies in the use of super-
pixels to significantly reduce the number of latent variables
in the model and the incorporation of a mixture of tree struc-
tured temporal components during inference. Figure 1 shows
a sample result of multi-class segmentation using our pro-
posed MoT video model and variational inference scheme.
A shorter version of this work appeared in Budvytis et al.
(2012).

The pixel label posteriors (confidences) we infer can be
used to train a Random Forest classifier in a semi-supervised
setting as in Budvytis et al. (2011). The predictions from
this classifier (super-pixel unaries) can be fused with the
MoT time-series to improve the segmentation quality in some
sequences. The pixel posteriors also provide an opportunity
to perform active learning for video segmentation (Settles
2012).

To summarise, the contributions we make in this paper are
as follows:

1. A new MoT video sequence probabilistic graphical
model.

2. An efficient structured variational inference strategy for
obtaining super-pixel labels and their confidences for
multi-class semi-supervised segmentation problems.

The remainder of this paper is organised as follows. We
present a comparative literature review in Sect. 2. Our pro-
posed video model is explained in detail in Sect. 3. The infer-
ence strategy for segmentation is then elaborated in Sect. 4.
We then discuss our experimental results on both binary and
multi-class problems using several quantitative and qualita-
tive comparisons in Sect. 5. We discuss the computational
requirements of our algorithm in Sect. 6 and bring out the
advantages and the drawbacks of our approach in Sect. 7.
This is followed by comments in Sect. 8. We conclude in
Sect. 9 with pointers to future work.

2 Literature Review

We can broadly divide video segmentation approaches into
the following three categories.

Unsupervised segmentation: In recent times, unsupervised
video segmentation has gained a lot of attention (Vazquez-
Reina et al. 2010; Lezama et al. 2011; Lee et al. 2003;
Grundmann et al. 2010; Xu et al. 2012; Cheng and Ahuja
2012) especially as extensions of image super-pixellization
to space–time super-pixels. The aim of these methods is
to group pixels which are photometrically and motion-wise
consistent. In simple cases, where there is a clear distinc-
tion between foreground and the background, the grouping
may appear to be semantically meaningful. However, in more
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complex videos, the result in general is an over-segmentation,
and requires additional knowledge (through user interaction
for example) to achieve any object level segmentation. In
contrast, in this work, we develop a probabilistic framework
which jointly models both appearance and semantic labels
with a view to perform semi-supervised video segmenta-
tion. A second distinction of our algorithm is that it per-
forms probabilistic inference, as opposed to the more com-
monly used MAP inference. We demonstrate that inference
of labels and their marginal posteriors enables bootstrapped
semi-supervised learning of classifiers which facilitates seg-
mentation of long and complex sequences.

Other unsupervised techniques are Video Epitomes (Che-
ung et al. 2005) and Image Jigsaws (Kannan et al. 2006).
The common factor underlying these latent variable models
is the idea of removing redundancy in a set of images by dis-
covering a compact latent representation (semantic clusters,
Epitomes, Jigsaws). For a video sequence, these models can
learn correlations between pixels in non-successive frames
via the latent representation. However, there is a model selec-
tion step (number of clusters, size of Epitomes or Jigsaws)
which is usually handcrafted. The main drawback however
is the computational complexity in learning these represen-
tations. In this work, we train a Random Forest (Breiman
2001) in a semi-supervised setting to establish correlations
between non-successive video frames.

Semi-supervised segmentation: The label propagation
method of Badrinarayanan et al. (2010) jointly models
appearance and semantic labels using a coupled-HMM
model. The key idea is to influence the learning of frame to
frame patch correlations as a function of both appearance and
class labels. This method was extended to include correla-
tions between non-successive frames using a Decision Forest
classifier by Budvytis et al. (2011) and Badrinarayanan et al.
(2013). In this work, we follow these in jointly modelling
appearance and semantic labels. The main difference is that,
while these methods employ a patch based tree structured
graphical model, we use a super-pixel based mixture of tem-
poral trees. This mixture importantly models the uncertainty
in establishing temporal correlation between frames.

Tsai et al. (2010) jointly optimize for temporal motion and
semantic labels in an energy minimization framework. In this
interesting framework, they use a sliding window approach
to process overlapping n-frame grids for the sake of reducing
computational burden. The result of one n-frame grid is used
as a hard constraint in the next grid and so on. In contrast,
we treat the whole video volume at once, inferring both tem-
poral correlations and label uncertainties. Fathi et al. (2011)
use semi-supervised and active learning for video segmenta-
tion. Each unlabelled pixel is provided a confidence measure
based on its distance in a neighbourhood graph to a labelled
point. These confidences are used to recommend frames in

which more interaction is desired. In our approach, infer-
ence directly leads to confidences and active learning can be
pursued.

Other recent research has focussed on active frame selec-
tion for label propagation in video sequences (Vijaya-
narasimhan and Grauman 2012). This is another important
issue for label propagation in videos, however, this is beyond
the scope of this paper. The work of Nagaraja et al. (2012)
use local classifiers learnt using the user provided labelled
data to correct for errors introduced in optic flow based frame
to frame label propagation. In our algorithm, we explicitly
model and infer temporal linkage between frames to avoid
using erroneous optic flow. The classifier in our algorithm is
learnt using all of the video data, as opposed to just the user
labelled key frame. Wang and Collomosse (2012) attempt
to tackle the problem of erroneous optic flow by propa-
gating labels based on a probabilistic motion model which
allows for a distribution over pixel motion vectors. However,
they address the problem of streaming label propagation as
opposed to considering the full video volume as in our work.

Segmentation by classification: Decision tree architectures
such as the popular Randomized Decision Forests (Breiman
2001) have gained popularity in unstructured classification
tasks. The semantic Texton forests (STF) (Shotton et al.
2008) is an example, where simple pixel intensity compar-
isons within a patch can be used to transform the image
into a descriptor space (such as textons obtained by filtering
an image and classifying the filter output descriptors). The
authors show that textonising an image (Shotton et al. 2006)
in this efficient manner can also aid in segmentation when the
forest is trained with annotated images. In our MoT model,
we employ a decision forest classifier to implicitly establish
correlations between temporally non-successive frames (see
Fig. 2).

In recent years, structured classification models such as
conditional random fields (CRF) (Boykov and Jolly 2001)
have led the way in image segmentation problems, partic-
ularly for foreground object cut-out by querying the user
for some supervisory strokes or a bounding box around the
object of interest. In practice, their main attraction arises
from the ability to perform global optimisation or in find-
ing a strong local minima of a particular class (sub-modular
class) of CRF’s at interactive speeds (Boykov and Jolly 2001;
Boykov et al. 1999). There are one or two notable instances
which have tried to extend their image segmentation algo-
rithms directly for videos, either by propagating MAP esti-
mates sequentially (sub-optimal) (Kohli and Torr 2005) or
performing MAP inference on N-D sequences (Boykov and
Jolly 2001). Another interesting approach for N-D segmen-
tation is the Geodesic Segmentation algorithm (Criminisi et
al. 2010) which parametrises the set of possible segmen-
tations and picks the MAP estimate within this limited set
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Fig. 2 On the top left is the factor graph of the proposed MoT model.
Image appearance, super-pixel labels and their temporal links are jointly
modelled. In stage S1, we perform structured variational inference,
without any super-pixel unaries, to estimate the super-pixel marginal
posteriors. This is followed by stage S2 wherein a soft label Random
Forest classifier is trained with pixel marginal posteriors as vector or soft

labels. The predictions from the classifier are injected back as super-
pixel unaries for a second iteration of label inference (S3) to produce the
final super-pixel labels and their uncertainties. Note that pixels which
are uncertain are shown in black in the “labelled” images (Color figure
online)

by performing energy minimization. As pointed out by Bai
et al. (2009), performing MAP inference on large 3D vol-
umes results in an uncontrollable work flow. Finally, multi-
label MAP inference is computationally expensive (Tsai et
al. 2010), necessitating short overlapping time window based
video segmentation.

3 Proposed MoT Video Model

We super-pixelize each image in the video sequence using
the SLIC algorithm (Achanta et al. 2010) into about 500
super-pixels. Let Si, j denote super-pixel j at frame i , and
Zi, j denote its corresponding missing label. We associate
the temporal mapping variable Ti, j to super-pixel Si, j . Ti, j

can link to super-pixels in frame i−1 which have their centers
within a window Wi, j (50 × 50), placed around the center of
Si, j . Note that this implies that each Ti, j can have a different
range.

Let Si = {
Si, j

}�(i)
j=1 , Zi = {

Zi, j
}�(i)

j=1 and Ti = {
Ti, j

}�(i)
j=1

denote the set of super-pixels, their labels and the correspond-
ing temporal mapping variables respectively at frame i . �(i)
denotes the number of super-pixels in frame i . Our proposed
MoT probabilistic graphical model (see Fig. 2) for the video
sequence factorises as follows:

p (S0:n, Z0:n, T1:n|μ) = 1

Z (μ)

×
∏

i=1:n

∏

j=1:�(i)

�a
(
Si, j , Si−1,Ti, j

)
�l

(
Zi, j , Zi−1,Ti, j |μ

)

×�u
(
Zi, j

)
�u

(
Z0, j

)
�t

(
Ti, j

)
, (1)

where Si−1,Ti, j indexes the super-pixel mapped to by Ti, j in
frame i − 1 and similarly for Zi−1,Ti, j .

To define the appearance factor �a(.) of the MRF on the
R.H.S of (1), we first find the best match pixel in frame i −1
for a pixel in frame j by performing patch cross-correlation
within a pre-fixed window (3 × 3 patch size and a window
size of 50 × 50). The appearance factor is then defined using
the number of pixels in super-pixel Si, j which have their best
matches in Si−1,Ti, j as follows,

�a
(
Si, j , Si−1,Ti, j

)
� #shared pixel matches (2)

Note that more sophisticated super-pixel match scores can
also be substituted here, for instance those based on colour
histograms, texton histograms, optic flow and SIFT-flow as
in Fathi et al. (2011). In our experiments , we demonstrate
that the simple measure in (2) already provides us with com-
petitive results (see Table 1).
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Table 1 Quantitative evaluation on the SegTrack tracking and segmentation dataset (Tsai et al. 2010)

Video Sequence Properties Performance comparison

Average
object size

No. of
frames

Chockalingam
et al. (2009)

Tsai et al.
(2010)

Fathi et al.
(2011)

Budvytis
et al. (2011)

Budvytis
et al. (2011)
tuned

Proposed MoT model

Best Tree
only

MoT MoT with
Classifier

Parachute 3,683 51 502 235 251 404 258 429 301 296

Girl 8,160 21 1,755 1,304 1,206 1,705 820 3,795 2,387 1,200

Monkey-dog 1,440 71 683 563 598 736 387 2,054 509 412

Penguin 20,028 42 6,627 1,705 1,367 19,310 1,212 3,218 1,736 29,461

Bird-fall 495 30 454 252 342 468 259 570 434 508

Cheetah 1,584 29 1,217 1,142 711 1,501 923 851 870 855

Bold values indicate the best results. In all these experiments only the start frame of the video sequence is user labelled. The score is the average
label mismatch per frame computed using the ground truth. Our proposed method with the use of the learnt classifier, and with manually tuned
parameters, out performs most methods in two sequences (girl, monkey-dog) and shows comparable performance in another two (parachute,
cheetah). We perform poorly in the birdfall sequence due to the very small size of the foreground object and due to severe foreground/background
overlap in the penguin sequence. The best overall performance is the manually tuned tree structured model of Budvytis et al. (2011) which uses
rectangular patches instead of super-pixels for segmentation. We also provide results when only the best tree among the mixture is chosen for
segmentation and compare it alongside the full mixture of trees based segmentation. On this dataset, our MoT model shows more competitive
results

Fig. 3 An illustration of the MoT model with three component tem-
poral trees in the mixture. Each node is a super-pixel. Moving from
root to leaf three temporal tree structures are visible. During inference,

super-pixel label predictions from each tree is weighted by the poste-
rior probability of the corresponding tree in the mixture (Color figure
online)

The label factor �l(.) is defined between the multinomial
super-pixel label random variables as follows.

�l
(
Zi, j = l, Zi−1,Ti, j = m|μ)

�
{

μ if l = m,

1 − μ if l �= m.
, (3)

where l, m take values in the label set L. μ is a parameter
which controls label affinity. The single node potential for the
temporal mapping variables �t (.) is similar to a box prior and
is defined as follows.

�t
(
Ti, j

)
�

{
1.0 if Ti, j ∈ Wi, j ,

0.0 if outside.
(4)

The super-pixel label unary factors �u
(
Zi, j

)
are defined in

Sect. 4.2.
From (1) we note that the temporal mapping variable is

present both in the appearance and label factor. Thus these
variables are jointly influenced by both object appearance and

semantic labels, a property which is desirable for interactive
video segmentation systems.

As shown in Fig. 3, for a given instance of each of the map-
ping variables, a temporal tree structure is formed linking the
super-pixels from the first (root) to the last frame (leaves).
Therefore, the probabilistic model in (1) is a mixture of tem-
poral trees (MoT model). Below we present our structured
variational inference strategy for the MoT model.

4 Inference

It is clear from (1) that computing the partition function
Z (μ, σ ) is computationally intractable due to the combina-
torial number of states of the temporal mapping variable and
the super-pixel labels. Therefore, we resort to structured vari-
ational inference, which is an approximate inference scheme
(Saul and Jordan 1996) which allows us to incorporate suit-
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able types of independency relationships in the approximate
posterior. The key idea in this inference scheme is to retain
as much structure in the approximate posterior as compu-
tationally tractable. This provides more robust inference as
opposed to the more basic mean-field variational inference
wherein the joint posterior of the variables factorises into
independent terms (Turner et al. 2008).

In our work, we assume the following form for the approx-
imate variational posterior of the latent variables.

Q (Z0:n, T1:n) � Q (Z0:n)
∏

i=1:n

∏

j=1:�(i)

Q
(
Ti, j

)
, (5)

where the temporal mappings are assumed independent in
the approximate posterior (as in mean-field approximations).
However, the super-pixel latent labels do not factorise into
independent terms, thereby maintaining structure in the pos-
terior. This form is chosen as a compromise between per-
forming tractable inference and retaining as much structure
as possible in the posterior.

The observed data log likelihood can now be lower
bounded using the approximate posterior in (5) as follows.

log (S0:n|μ) ≥
∑

Z0:n ,T1:n
Q (Z0:n, T1:n)

× log

(
p (S0:n, Z0:n, T1:n|μ)

Q (Z0:n, T1:n)

)
(6)

To maximise the above lower bound, which is a func-
tional of the variational posterior and the model parameters,
we employ calculus of variations (Bishop 2006) and obtain
the following fixed point equations for the approximate pos-
teriors.

Q
(
Ti, j

) ∝ �t
(
Ti, j

)
exp

[ ∑

Zi, j ,Zi,Ti, j

Q
(
Zi, j , Zi,Ti, j

)

× log
(
�a

(
Si, j , Si−1,Ti, j

)
�l

(
Zi, j , Zi−1,Ti, j |μ

))]
, (7)

Q (Z1:n) ∝
∏

i=1:n
�u (Zi ) exp

[∑

Ti, j

Q
(
Ti, j

)

× log
(
�l

(
Zi, j , Zi−1,Ti, j |μ

))]
. (8)

To compute the approximate super-pixel label marginals
and pair-wise marginals required for the above equation we
use variational message passing (Bishop 2006). The varia-
tional message (vm) which super-pixel Si, j sends to its tem-
poral neighbour Si−1,Ti, j is as follows.

vm Zi, j →Zi−1,Ti, j

(
Zi−1,Ti, j

)
=

∑

Zi, j

exp
[

Q
(
Ti, j

)

× log
(
�l

(
Zi, j , Zi−1,Ti, j |μ

))] ∏

n∈Ne
(
Zi, j

)\Zi−1,Ti, j

vmn→Zi, j .

(9)

Algorithm 1: Mixture of Trees (MoT) model for Video
Segmentation

Input: Super-pixels S0:n (video), User labelled frames.
Output: Pixel label probabilities.
Initialisation
Set the initial values of μ to those given in Sect. 5.
Set all unaries to uniform distributions.
Set all variational posteriors to uniform distributions.
Set max_iter = 50;

Infer temporal mapping posteriors Q
(
Ti, j

)
using (7) for both

forward and time reversed sequences.
S1. for i = 1 to max_iter do

Infer Q
(
Zi, j

)
using (10).

Do this for both forward and backward MoT models.
S2. Train the Random Forest with average of posteriors Q

(
Zi, j

)

from both forward and backward MoT models as labels.
S3. Set the super-pixel unaries to the predictions from the
Random Forest. See Sect. 4.2.
Perform label inference with unaries on both forward and
backward MoT models.
For each super-pixel, average its label posteriors inferred from
both the models. See Sect. 4.3.
Assign all pixels of a super-pixel the same marginal posterior as
the super-pixel itself.

Using the above messages, the approximate variational
posteriors can be obtained as shown below.

Q
(
Zi, j

) ∝
∏

n∈Ne(Zi, j)

vmn→Zi, j (10)

Q
(
Zi, j , Zi−1,Ti, j

) ∝
∏

n∈Ne(Zi, j)\Zi−1,Ti, j

vmn→Zi, j

×
∏

n∈Ne
(

Zi−1,Ti, j

)
\Zi, j

vmn→Zi−1,Ti, j

× exp
[

Q
(
Ti, j

)
log

(
�l

(
Zi, j , Zi−1,Ti, j |μ

))]
. (11)

In our experiments, we first set all the variational sin-
gle and pairwise posteriors to uniform distributions. Then
we compute Q

(
Ti, j

)
once at the first iteration. Then after a

fixed number of message passing iterations, (10) is used to
compute the approximate super-pixel marginal posterior. We
also tried to alternate between inferring the temporal map-
pings and the labels but this is computationally expensive and
did not improve the results. Therefore, we only performed a
single round of inference of the mapping variables. A sum-
mary of the inference technique with a view to encourage
implementation is given in Algorithm 1.

4.1 Influential Parameters

We introduce two parameters α, β which control the effect
of mixing from different trees for label inference and the
strength of variational messages respectively. We compute
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Q
(
Ti, j

)α and re-normalize to obtain an α controlled poste-
rior over the temporal mapping variables. Larger values of α

imply the label inference is influenced by fewer components
of the temporal mixture of trees. This reduces the effective
number of loopy cliques in the model.

The MoT model is loopy by construction and the fea-
tures used to create temporal linkages [see (2)] can result in
very flat Q(Ti, j ) distributions. Therefore, in practice, vari-
ational messages reduce to near uniform distribution after
a few frames only. To tackle this problem, at each iteration
of variational message passing, we raise the messages to a
power β and re-normalize. This step helps propagate mes-
sages over longer durations. In Sect. 5 we discuss the effect
of varying these parameters on the accuracy of segmentation.

4.2 Semi-Supervised Learning of Unaries

In the first iteration of inference, we set the super-pixel unar-
ies to uniform distributions and use our proposed inference
technique to estimate the super-pixel marginal posteriors. We
assign each member pixel of a super-pixel the same marginal
posterior as the super-pixel itself. We then train a Random
Decision Forest (Breiman 2001) using these posteriors as soft
pixel labels, i.e each pixel has a vector label instead of a scalar
class label. At training time, we compute a histogram of soft
labels at each node of a tree in the Forest by element wise
addition of the vector labels and use the “entropic informa-
tion gain” criterion used by Shotton et al. (2008) to evaluate
the split function. We use simple but computationally effi-
cient pixel intensity difference features at each split node as
in Shotton et al. (2008). We term this Random Forest, trained
in a semi-supervised manner, the soft label Random Forest
(slRF) as in Budvytis et al. (2011).

We bootstrap the predictions from the learnt slRF into the
MoT time-series model. We assign each super-pixel the aver-
age of the slRF predicted label distributions of its pixels. The
averaged distribution is the unary �u

(
Zi, j

)
for each super-

pixel which is used in the second iteration of super-pixel label
inference. These unaries, learnt in a semi-supervised manner,
can help improve segmentation accuracy as shown in Fig. 8.
Unlike traditional tracking algorithms were the unaries are
learnt using the first frame labels, we use the entire video data
and the corresponding inferred labels to learn the unaries. In
some approaches to segmentation (Fathi et al. 2011), labels
are propagated to the adjacent frame and their MAP estimate
is used to update the unary parameters. This is sub-optimal,
given that the entire video volume is not used to update the
unary. In contrast, our efficient inference method allow us to
pool in the entire video data and the label posteriors to learn
the unaries.

Our semi-supervised training of the Random Forest is dif-
ferent from the transductive forest described in Criminisi and
Shotton (2013). In the transductive forests, labelled and unla-

belled data are treated separately and a new information gain
criterion is introduced to combine label and appearance based
entropies. In contrast, we first assign each unlabelled data
point a soft label obtained from the label inference step. At
training time, we compute a histogram of soft labels at each
node and use the information gain criterion of Shotton et al.
(2008) to evaluate the split function.

4.3 Forward and Backward MoT

The component trees in the MoT model have their root in the
first frame and leaves in the last frame. This introduces a tem-
poral bias. We correct for this bias by performing inference on
a time reversed video sequence and averaging the super-pixel
label posteriors from the forward and reversed time-series.
This averaged posterior of super-pixel labels is used in the
semi-supervised training of the slRF discussed above.

4.4 Best Tree Versus MoTs

If we approximate the variational posterior Q
(
Ti, j

)
by a sin-

gle point posterior at its MAP location then the variational
message passing (9) reduces to standard message passing on
a best tree structured MoT model (exact inference). Inference
on this best tree structure can be performed very efficiently at
low memory and computational cost (see Table 3). This best
tree structure quite often demonstrates even better segmen-
tation performance than the full mixture of trees model. This
is particularly when the feature used to measure super-pixel
similarities is weak and thus unable to provide a good quan-
titative ranking of the possible matches for a super-pixel in
an adjacent frame. This poor ranking is directly reflected in
the Q

(
Ti, j

)
distribution where the probabilities of each state

of Ti, j are unreliable. In our experiments, we have found
instances where the mixture model performs better than the
best tree model and some others where its performance is
inferior to the best tree model (see Sect. 5).

5 Experiments and Results

We evaluated the performance of our proposed MoT model
based algorithm on binary and multi-class semi-supervised
video segmentation problems. The experiments are explained
in more detail below.

5.1 Binary Segmentation

We evaluated the performance of our approach in a track-
ing and segmentation setting using the challenging SegTrack
(Tsai et al. 2010) dataset. This dataset with each frame ground
truth consists of six sequences with clutter, self-occlusion,
small sized objects and deformable shape filmed with a mov-
ing camera. In Table 1 we report our scores (number of pixel
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Fig. 4 Sensitivity of pixel labelling accuracy to parameters α, β (see
Sect. 4.1) shown for three of the SegTrack (Chockalingam et al. 2009)
sequences. In each heat map, deep blue hues represent very low accu-
racy and deep red represents high accuracy. It is clear from these maps
that there is no common parameter value(s) which provide high perfor-
mance for all the sequences. In the parachute sequence, high accuracy is

obtained for low values of α which corresponds to many mixture com-
ponents in the MoT model. In the Monkey-dog and Cheetah sequences,
the α values progressively increase for higher accuracy. This reduces
the number of influential components in the mixture, making the model
less loopy (Color figure online)

(a)

(b)

(c)

(d)

Fig. 5 Qualitative difference in segmentation when only the best tree
of the mixture is used for segmentation as compared to when the full
mixture of trees is used. The best tree is computed by retaining only the
MAP estimate of each of the temporal mapping variables. In this exam-
ple, the best tree based inference where each super-pixel has only one
link to another super-pixel in the previous frame, performs poor qual-
ity label propagation. This is because of some erroneous super-pixel

linkages in the tree (connections between foreground and background
super-pixels). In contrast, in the MoT model each super-pixel is con-
nected to several others in the neighbouring frame. Therefore, even if
the best link for a super-pixel is erroneous, still erroneous label propa-
gation can be avoided if the majority of other possible links are correct,
i.e connect to the correct class (Color figure online)

label errors per frame) using manually selected parameters
and settings. Scores of some of the recent state of the art
approaches are also reported alongside results of our method
with different settings. The value of μ was empirically set to
0.95 for this experiment.

Effect of the influential model parameters α, β To demon-
strate that a single value of influential parameters α, β is
insufficient to cover this entire dataset, we plot the score

for the sequences over different values of the parameters
(see Fig. 4). Note that we do not include any unaries while
computing this score. Therefore, this error score gives us an
indication of the performance of the MoT time-series alone.
Using this plot, we select the parameter settings for each
sequence which results in the lowest labelling error. It is clear
from this experiment that the optimal temporal structure is
different for each sequence. For example, in the monkey-dog
sequence from the SegTrack dataset (Tsai et al. 2010) shown
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in Fig. 5 the more “loopy” temporal structure MoT model per-
forms better than the single best tree structured MoT model.
If any single link in the best tree is incorrect (due to the feature
used to measure super-pixel similarities) then the labelling
error propagates. However, in the loopy MoT model with
several tree components in the mixture, each super-pixel has
several links in the adjacent frame. Therefore, even if the
MAP link is erroneous (connects to another class), it is still
possible to avoid erroneous label propagation if the majority
of the other links connect to super-pixels of the correct class.
In other sequences, such as the cheetah sequence from the
same dataset, a very high value of α provides the best per-
formance. At such as high value of α, the model is closer to
a tree structure than a loopy one.

In comparison, Fathi et al. (2011) attempt to automati-
cally learn their model parameters by self-training, that is
by fixing some of the inferred labels and using these labels
to learn the weights given to temporal predictions versus
unary (classifier) predictions. However, in this paper we do
not adopt this approach to parameter setting as it relies on
instantaneous decision making which often leads to label
drift.

We also find from our experiments that in some instances
the performance improves when a unary term learnt from
only the first frame is included in the starting iteration
(Girl sequence in Table 1). In the Penguin sequence, we
avoid the use of any unaries as there is significant over-
lap between foreground object and background. In the
remaining sequences, we follow the setting prescribed in
Algorithm 1.

We can observe good qualitative performance of our algo-
rithm in Fig. 6. It is important to note that a lower quantitative
score does not necessary imply a poor qualitative result. For
instance, in the fast motion cheetah sequence, the foreground
object is tracked and segmented reasonably well. However,
a small part of the background which appears as true posi-
tive foreground in a few frames [see Fig. 6 (22–26)] lowers
quantitative accuracy.

In all our experiments, each channel in all the images are
scaled to lie between [0.0, 1.0]. We choose the 1st stage Ran-
dom Forest (RF) classifier, as in Shotton et al. (2008), with
16 trees, each of depth 8. Input LAB patches of 21 × 21
are extracted around every 2nd pixel on both axis. We leave
out border pixels in a 10 pixel band to fit all rectangular
patches. We use the same kind and number of features as in
Shotton et al. (2008). The key difference is that we use the
inferred pixel label posteriors to train the slRF. We compute
the entropic information gain and the leaf node distributions
(normalized histograms) by treating the data point label as a
vector whose elements sum to unity. This has the advantage
that entropies can be computed directly using label distribu-
tions (see Sect. 4.2).

5.2 Multi-Class Segmentation

We used the publicly available CamVid driving video dataset
(Brostow et al. 2009) for our multi-class video segmentation
experiments on long and challenging video sequences. We
chose sequence seq05VD (30 Hz) in this dataset and divided
it into six sequences as in Budvytis et al. (2011). We use three
of the six sequences, described in Table 2, to perform various
quantitative and qualitative comparisons. All the sequences
considered are of 750 frames in length and are uniformly
down sampled to a length of 150 frames in order to reduce
computational and memory requirements. In order to make
a fair comparison with the state-of-the-art algorithm of Bud-
vytis et al. (2011) the resolution of video frames are reduced
to 320 × 240. The value of μ was empirically set to 0.7 for
this experiment.

The quantitative analysis reported in Table 2 is performed
on classes like roads, pavements, road markings and oth-
ers (10 classes including a void class) which are relevant
to driving. The metrics used for this evaluation are global
accuracy (percentage of pixels labelled correctly) and class
average accuracy measured for all static classes (ASC), small
static classes (SSC = {signs, poles, road markings}) and large
static classes (LSC) which do not include SSC. These accu-
racies are computed only over pixels labelled into known
classes in the ground truth.

We first discuss a study of the performance of the stages
S1, S2, S3 (see Fig. 2) of our proposed semi-supervised seg-
mentation/label propagation algorithm. Note that the experi-
mental set up for label propagation and slRF learning is nearly
identical to the binary segmentation experiment described
earlier in Sect. 5.1, including the method to choose the opti-
mal values of the α and β parameters. The only difference is
that, the patch size is set to 7 × 7 (see Sect. 3).

Labelling accuracy and density We present evaluations of
our algorithm under various metrics for Sequence 1 from
the CamVid dataset in Fig. 7. The graph on the left panel of
Fig. 7 shows how the segmentation accuracy changes when
the number of accepted pixel labels is varied. The number of
accepted pixels can be varied by applying a threshold over
the uncertainty of the most likely pixel label. Note that all
the stages of our algorithm provide uncertainty estimates of
each pixel label. From this graph it is clear that, in general,
the accuracy improves as we move from stages S1 to S3. This
shows the beneficial effect of semi-supervised learning using
the pixel label distributions, particularly as the number of
accepted points are increased. This point is again emphasized
in Fig. 8 which shows qualitative results for each one of the
three stages along with their uncertainty maps.

The graph in the middle panel compares global accuracy
and percentage of labelled points obtained at various thresh-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 6 An qualitative results on the SegTrack dataset (Tsai et al. 2010).
In all these experiments only the start frame of the video sequence is
user labelled. Notice how our algorithm is able to cope with fast motion,

motion blur, shape changes (a, b, c, d, g, h, i, j, k, l) and small sized
objects (f). The main failure case is (e) due to its small size. Also see
the supplementary video (Color figure online)

olds of label uncertainty for the MoT model at different val-
ues of the α parameter (this controls the “loopyness” of the
model), and including the MoT model which only uses the

best tree structure (see Sect. 4.4). The highest accuracy is
obtained for the best tree structured MoT model and the
MoT model with α set to 32. At such a high value of α
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Table 2 This figure illustrates a qualitative comparison with other recent semi-supervised video segmentation algorithms (Budvytis et al. 2010)
(HLP) and (Budvytis et al. 2011) (PBM) (Color table online)

Video segmentation is performed on long and complex (750 frames) sequences the from CamVid (Brostow et al. 2009) dataset. Our method obtains
comparable accuracy over large static classes (road, sky, building, pavements) for a similar label density and a similar false positive rate as the
method of Budvytis et al. (2011) for Sequence 1. The average accuracy is lower in Sequences 2 and 3, mainly due to misalignment of super-pixels
with class edges and a poor ranking of super-pixel matches across adjacent frames. However our segmentation algorithm is both faster and more
memory efficient by about two orders of magnitude

Fig. 7 The three plots illustrate various performance measures for dif-
ferent stages of our algorithm. The plot on the left panel indicates that
the segmentation quality increases from stage S1 to stage S3. The mid-
dle panel shows that for high values of α (with fewer tree components
in the mixture) we obtain a better global accuracy as the threshold over
the super-pixel MAP label uncertainty is varied. The plot on the right

panel demonstrates how average accuracy and number of potentially
correctly labelled points (true positives and uncertain) behaves depend-
ing on the uncertainty threshold. This plot is used to choose an optimal
threshold over label certainty to obtain the results reported in Table 2
(Color figure online)

there are very few tree components in the MoT model and it
begins to resemble the best tree structured MoT model more
closely. For lower values of α, which retains many com-
ponents in the mixture, the model is quite loopy. This has

the effect that the labels of pixels towards the middle of the
sequence are falsely confident, and thus the accuracy for a
particular threshold is poorer even though the label density is
higher.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 8 This figure illustrates the three stages S1 (c, d), S2 (e, f), S3
(g, h, i) of our segmentation algorithm performed on Sequence 1 from
the CamVid (Brostow et al. 2009) dataset. Row (a) shows the frames
and (b) the corresponding ground truth. The rows (c, e, g) indicate the
most likely class with its corresponding marginal posterior or uncer-
tainty map represented respectively in rows (d, f, h). Row (i) shows the
segmentation result when a threshold of 0.756 is applied over the mar-
ginal posteriors represented in row (h). Note the increasing super-pixel

label uncertainty further away from the labelled ends in (d). Also note
that large static classes such as road, pavement, building are labelled
quite well. However, our algorithm performs poorly for small static
classes such as signs, road markings or poles, mainly due to their very
small resolution. Note that pixels which have completely uncertain label
distributions are shown in black color in (c, e, g, i). Also see the sup-
plementary video (Color figure online)

Finally, the graph on the right panel shows a more detailed
analysis of the class average accuracy of our algorithm on all
static classes (ASC), large static classes (LSC), small static
classes (SSC) and outlier class (OC). The outlier class con-
sists of all pixels with a void label in the ground truth. As
the threshold over the uncertainty of the most likely label
at each pixel is increased, intuitively the accuracy of ASC,
LSC increases with a corresponding decrease in label den-
sity. The true positive labels and uncertain labels over SSC
increases, which indicates that these classes are not falsely
labelled as other large classes. Similarly, the true positives

and uncertain labels over OC also increases, which indi-
cates that the algorithm does not fill in the void labels with
other classes as the threshold in increased. Note that for
the outlier class accuracy computation, the true positives
are those which are due to propagation of void labels pro-
vided in the user labelled end frames and uncertain labels
correspond to those which are below the threshold. We
use this graph to compute an optimal threshold for pixel
MAP label uncertainty such that there is a balance between
the percentage of labelled points and the class average
accuracy.
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Comparison with other state-of-the-art approaches Table 2
compares the accuracy of stage S3 of our algorithm with
methods of Budvytis et al. (2010) and (2011) for a similar
label density. A trend which is common to all three sequences
is the increase in accuracies (both global and class average)
as the α value is increased and which culminates with the
highest accuracy when only the best tree structured MoT
model is used. For Sequence 1, we obtain accuracies com-
parable to the other competing methods, however the per-
formance is poorer for the remaining sequences. We offer
two reasons for this observation. First, the use of an off the
shelf super-pixellization algorithm which produces super-
pixel boundaries that often does not align with class edges.
The second reason is the use of a simple feature (number
of shared patch matches) to measure super-pixel similar-
ities. This results in an unreliable ranking of similarities
between super-pixels and so the probabilities of different
states of the mapping variables are not a true indicator of its
strength.

Since the CamVid sequences are long, it is desirable to
expect the labels to be more uncertain towards the middle
of the sequence, where objects unseen in the labelled frames
appear. Unfortunately, this effect does not occur for low val-
ues of α when the MoT model is very loopy. The varia-
tional messages reinforce themselves after several iterations
of message passing resulting in very confident marginal pos-
teriors. Here we would like to clarify that the uncertainty does
not decrease in the case where the full mixture of trees is used.
In fact, for low values of α, the uncertainty level remains con-
stant throughout the sequence. Another issue with very loopy
models is that the marginals are quite sensitive to even small
numerical approximations and round-off errors. The more
tree structured versions of the MoT model (low α values) are
less prone to these issues and result in more uncertain labels
toward the middle of the long sequences. However, for short
sequences and binary segmentation problems such as those
used in Sect. 5.1 good performance can still be obtained for
fairly loopy MoT models as indicated in Fig. 5. Figure 9

Fig. 9 This figure illustrates our segmentation output (labels and cor-
responding marginal posteriors for MoT models with different α values.
The higher the value of this parameter, the fewer trees contribute to the
mixture, thus making the model less loopy. The best result, as also seen
from Fig. 7 and Table 2, is achieved when only the best tree in the
mixture is used for inference. This is mainly due to misalignment of

super-pixels to class edges and poor ranking of super-pixel matches
across adjacent frames, which fails to exploit the flexibility of the mix-
ture model as compared to the binary segmentation problem. Note that
pixels which have completely uncertain label distributions are shown
in black in the “labelling” panels. Also see the supplementary video
(Color figure online)
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shows a qualitative comparison of labelling results for vary-
ing α values for a frame drawn from the middle of Sequence
1. The confident but erroneous marginal posteriors can be
observed at all stages of inference for high values of α.

6 Computational Requirements

We performed all comparisons of computational require-
ments on a machine with 8 core Intel Xeon (2.5 GHz) CPU
with 8GB of RAM. Table 3 compares time taken per frame
and the maximum RAM requirement for various stages of
the algorithm of Budvytis et al. (2011) and our algorithm.
The manner in which the temporal structure is inferred and
the training of the classifier is the same as in our algorithm,
hence identical memory usage and CPU usage numbers are
reported for those steps. The main difference in computa-
tional effort between the algorithm of Budvytis et al. (2011)
and our MoT model based algorithm can be seen in the label
inference stages. The model of Budvytis et al. (2011) con-
tains more than ten million random variables in total, com-
pared to about hundred thousand in the MoT model. There-
fore, their approach requires large amounts of RAM for both
binary and multi-class segmentation. For the same reasons,
it is also significantly slower than our best tree structured
MoT model. The difference in computational time between
the MoT model with many components in the mixture and
their method is smaller as performing several iterations of
variational message passing is time consuming.

The difference in computational time and memory require-
ment for the algorithm of Budvytis et al. (2011) and our model
is large for the multi-class segmentation of Sequence 1 from
the CamVid dataset. This is due to the need of storing and
loading large chunks of memory into a limited RAM. How-

ever, our more efficient MoT model based algorithm has low
computational load and thus can be applied to interactive
video segmentation on devices with limited computational
power such as smart phones or tablet PC’s.

7 Advantages and Drawbacks

The main advantages of our approach are summarised below.

1. Our MoT video time-series model and the accompanying
efficient variational inference scheme alleviates the need
to perform overlapping time window based video vol-
ume processing. This helps avoid instantaneous decision
making which often causes label drift.

2. We infer pixel-wise labels and their confidences (mar-
ginal posteriors). This is useful for both semi-supervised
and active learning systems.

3. In addition, we model uncertainty in the temporal links
explicitly which can sometimes correct for errors in the
best tree structured MoT model of the video as shown in
Fig. 5.

4. Our inference method is both computationally and mem-
ory wise efficient as can be seen from Table 3.

The main drawbacks and pointers to future work are:

1. The influential parameters α, β are manually set using
grid-search. This is made possible due to efficient label
inference. In future, we aim to learn these parameters for
each video sequence in an interactive setting.

2. We use simple patch cross correlation based features to
set the temporal links. This degrades performance and
so must be replaced with more robust features which are
able to rank the quality of matches between super-pixels.

Table 3 A comparison of computational requirements of our proposed algorithm and the one of Budvytis et al. (2011)

Note that our algorithm is faster and consumes less RAM by two orders of magnitude. This makes it applicable to real time interactive video
segmentation applications. ∗2 min is the estimate when only 8GB of RAM is available, while the time reduces to 11 s when there is no such
restriction
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8 Discussions

The MoT model can be seen as an extension of the single
tree model proposed earlier (Badrinarayanan et al. 2013).
However, there are two key changes, the first is the use of
super-pixels as the basic labelling unit and second is the use
of a loopy temporal structure. The loopy temporal structure
is employed to model the uncertainty present in the temporal
mappings as opposed to using only the best tree as in Badri-
narayanan et al. (2013). This mixture model, in principle,
can be used with patches instead of superpixels as in Badri-
narayanan et al. (2013). However, this is computationally
very intensive and unsuitable for real time video segmenta-
tion. Using superpixels can make the mixture model usable
in interactive settings as well.

Our proposed MoT model is loopy by construction and
so we chose to perform variational inference (see Sect. 4) to
estimate the super-pixel labels. However, variational infer-
ence is affected by issues such as numerical precision and
this restricts us to explore those parameter settings which
trade-off label density for accuracy (see Fig. 9). The use of
better features for estimating temporal mappings and a more
robust inference scheme can reduce this restriction.

From our experiments, we observed that in some seq-
uences where temporal links (computed with simple features)
can be established more reliably the MoT model performs
better than the single tree model (see Fig. 5). However,
in sequences where temporal links cannot be established
(ranked) reliably the power of the MoT model diminishes (see
Table 2). This effect was observed in complex and lengthy
sequences where the MoT model failed to achieve the same
level of performance as the single tree model. The perfor-
mance of the MoT model is also affected by the super-
pixellization algorithm used. We believe the use of more
sophisticated features for establishing temporal mappings
and better super-pixellization can improve the performance
of our MoT model.

9 Conclusion

We presented a novel mixture of temporal trees (MoT) model
for video segmentation. Each component in the mixture
connects super-pixels from the start to the end of a video
sequence in a tree structured manner. We provided a compu-
tationally and memory wise efficient inference scheme to
estimate pixel-wise labels and their confidences, both for
binary and multi-class segmentation problems. This infer-
ence scheme alleviates the need to perform short sliding time
window based video volume processing which often results
in erroneous label propagation. We demonstrated the effi-
cacy of our algorithm on challenging binary and multi-class
video segmentation datasets. For short sequences, we find

that several components of the mixture contribute towards
achieving good performance, however, on lengthy and com-
plex sequences fewer mixture components or the best tree
structure alone performs better. The use of an off-the-shelf
super-pixellization algorithm and weak features to measure
super-pixel similarities affect the performance of our algo-
rithm, especially when more components in the mixture
model are used. More improved super-pixellization schemes
and similarity measures can produce a better performance
of the MoT model. We now look forward to exploiting our
proposed algorithm in interactive settings where its compu-
tational efficiency is desirable.
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