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Abstract

This paper presents a method for the computation of free
space in complex traffic scenarios. Dynamic depth informa-
tion is estimated by integrating stereo disparity images over
time. Disparity and disparity speed are computed pixel-
wise with Kalman filters. The stereo information is used
to compute stochastic occupancy grids. Dynamic program-
ming on a polar-like occupancy grid yields the free space.
A posterior analysis of the free space allows detection of
the available free corridor in front of the ego-vehicle. The
method runs at 20 Hz frame rate in our vehicle.

1 Introduction

The computation of free space available in the environ-
ment is an essential task for automotive applications. The
free space is the world region where navigation without col-
lision is guaranteed. Navigable space is extremely impor-
tant if an escape route is required in a critical situation. In-
telligent vehicle systems need to also distinguish between
moving and static objects. A static concrete wall lying in
the path of a vehicle has to be treated differently than a
truck moving in front of the vehicle. This paper presents
a method for the computation of free space in complex traf-
fic scenarios including moving objects.

Figure 1 shows a block diagram of the method. Stereo
measurements are integrated over time obtaining dispar-
ity and disparity speed information, as well as their cor-
responding variances (see Section 3). This information is
used to compute a stochastic occupancy grid (see Section
2). Before computing the free space, a low pass filter is
applied to the occupancy grid in order to reduce the occu-
pancy evidence noise. Free space is computed by applying
dynamic programming to a polar-like representation of the
occupancy grid (see Section 4). As a final step, a free space
analysis is performed obtaining the free corridor in front of
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the vehicle (see Section 5). The following sections address
the main components of this algorithm.

2  Occupancy Grids

An occupancy grid is a two-dimensional array or grid
which models occupancy evidence of the environment. Oc-
cupancy grids were first introduced in [2]. An exhaustive
review on occupancy grids can be found in [12].

There are two main types of occupancy grids: determin-
istic and stochastic grids. Deterministic grids are basically
bi-dimensional histograms counting 3D points. They are
usually obtained by projecting the 3D view of measure-
ments onto the road and counting the number of points
within the same cell area ([10], [4]). The noise properties of
the 3D measurements are not explicitly modeled. Grid cells
with a large amount of hits are more likely to be occupied as
those with none or only few points. The choice of the dis-
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cretization of cells of a deterministic grid requires the usual
compromise of any sampling process. Small discretization
values avoid the accumulation of points. Large discretiza-
tion values lose spatial resolution, and therefore, estimation
accuracy.

On the other hand, the cells of the stochastic occupancy
grids maintain a likelihood or probability of occupancy.
Since in a stochastic approach a single measurement affects
the occupancy likelihood of the whole grid, an update func-
tion is defined. The update function specifies the operation
to perform on every cell based on the measurement and its
noise properties ([1] [11]). Stochastic occupancy grids are
more expensive to compute. However, they are much more
informative and do not suffer from discretization effects, as
deterministic grids do.

Figure 2 shows an example of a stochastic occupancy
grid. The following section describes how to compute oc-
cupancy grids from stereo measurements.

2.1 Stochastic Occupancy Grid Computa-
tion

Occupancy grids are computed by defining the func-
tion L;; (my,), which specifies the occupancy likelihood for
cell (i,4) given the measurement my. The measurement
my, = (u v d)? is composed of image coordinates (u,v)
and stereo disparity d. The measurement is the projection
of some world point g, such that m; = P(q), where P(-)
is the projection equation.

Given n stereo measurements, the occupancy likelihood
for a cell (i, j) is obtained as

D(i,§) =Y _ Lij(my). 1)
k=1

Assuming that cell (4, ) of a Cartesian occupancy grid is
centered at world coordinate (x;;, z;;) the likelihood func-

tion for cell (¢, j) is;
Lij(my) = G, (P(pij) —my), (2

where p;; = (245 0 2i5)", Gm (&) is the likelihood of ob-
taining an error £ given the measurement m. The error con-
tained in the measurement my, is assumed to be Gaussian
distributed. G, is the multi-variate Gaussian function.
Implementation details can be found in [1].

3 Pixel-Wise Estimation of Dynamic Stereo
Information

The main error of triangulated stereo measurement is in
the depth component (see e.g. [6]). The reduction of dis-
parity noise helps localization of estimated 3D points, and
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Figure 2. Stereo integration and occupancy
grids. Left and right rectified images are
shown at the left. The middle figure shows
the evidence grid computed based only on
the stereo information of the current frame.
The evidence grid shown at the right was
obtained with integrated disparity measure-
ments. The occupancy likelihood is encoded
as the brightness of the cells.

therefore the grouping of objects in the occupancy grid.
Tracking of features in an image over time allows reduc-
tion of the position uncertainty [5]. Nevertheless, tracking
is computationally expensive and highly restricts the real-
time capability of a system with an increasing number of
features. In [7] an iconic (pixel-based) representation for
disparity estimation without tracking is introduced. The dis-
parity image represents the state vector of a Kalman filter,
under the assumption that every pixel is independent. This
is equivalent to having many independent Kalman filters,
one for every position of the disparity image, leading to a
much more efficient computation of the filter. Nevertheless,
the method assumes a static world and in complex traffic
scenarios, with multiple longitudinal moving objects, this
leads to a bias in the estimation of disparity [13]. In order to
cope with this problem we extend this method to estimate
not only disparity, but also disparity rate, i.e. the longitu-
dinal speed of the corresponding disparity point for every
pixel of the image.

This method exploits the fact that multiple disparity ob-
servations of the same point are possible thanks to the
knowledge of the camera motion. Disparity measurements
which are consistent over time are considered as belonging
to the same spatial point, and therefore, disparity variance is
reduced accordingly. By observing the change of disparity
estimates over time, the simultaneous estimation of dispar-
ity rate and disparity rate variance is available. This stereo
integration requires three main steps as Figure 1 shows:
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e Prediction: The state and variance of every Kalman
filter is predicted up to the current time. This is equiv-
alent to computing expected optical flow and disparity
based on ego-motion [7], while assuming constant dis-
parity rate. The prediction of the variances includes
the addition of a driving noise parameter that models
the uncertainties of the system, such as ego-motion in-
accuracy.

e Measurement: Disparity and variance images are com-
puted based on the current left and right images. In or-
der to maintain the real time capability of the system, a
coarse-to-fine correlation-based algorithm is used [3].

e Update: Every filter is updated with its correspond-
ing measurement. Current predicted disparities with
no corresponding measurement (i.e. no disparity com-
puted for the current image position) are not immedi-
ately deleted, in the expectation that a measurement
for this estimate will be computed in the next frame.
Disparity measurements with no corresponding esti-
mate are considered new, and are added into the current
Kalman filter pool. Every remaining measured dispar-
ity has a corresponding estimate. If the measurement
does not lie within a 3 o distance from the current esti-
mate, the measurement is added as new, replacing the
estimate. Otherwise, the estimate is updated with stan-
dard Kalman filter correction equations [7].

A detailed description of this pixel-wise estimation of
stereo information can be found in [13].

An example of the improvement achieved with the iconic
representation is shown in Figure 2. The occupancy grid
shown at the left was obtained with standard output from
the stereo algorithm while in the occupancy grid at the right
was computed with an integrated disparity image. The im-
provement can be seen by the reduction of the dispersion of
registered measurements. A bicyclist at approximately 50
meters away is marked over the images. The integrated dis-
parity image shows a great improvement over the standard
measured disparity image.

4 Free Space Computation

Cartesian space is not a suitable space to compute the
free space, because the search must be done in the direction
of rays leaving the camera. The set of rays must span the
whole grid which leads to discretization problems. A more
appropriate space is the polar space. In polar coordinates
every grid column is, by definition, already in the direction
of a ray. Therefore, searching for obstacles in the ray direc-
tion is straightforward. For the computation of free space
the first step is to transform the Cartesian grid to a polar

0 pict 100m

Depth
Bepth

arity

Disp:

60 px 2m
op Image Col. 639 px m  Lat Pos. 7m

Figure 3. Free space computation. The car-
pet shows the computed available free space.
The free space is obtained by applying dy-
namic programming on a Column/Disparity
occupancy grid, obtained as a remapping of
the Cartesian depth map, shown to the right.
The resulting free space is shown as poly-
gons on the grids.

grid by applying a remapping operation. As polar represen-
tation we use a Column/Disparity occupancy grid [1]. The
middle image of Figure 3 shows an example of our Col-
umn/Disparity occupancy grid.

In the polar representation, the task is to find now the first
visible obstacle in the positive direction of depth. All the
space found in front of the the occupied cell is considered
free space. The solution to be found forms a path from left
to right segmenting transversely the polar grid into two re-
gions. Instead of thresholding each column as usually done
[8] [9], dynamic programming is used. The method based
on dynamic programming has the following properties:

e Global optimization: Every row is not considered inde-
pendently, but as part of a global optimization problem
that is optimally solved.

e Spatial and temporal smoothness of the solution: The
spatial smoothness is imposed by the use of a cost that
penalizes jumps in depth while temporal smoothness
is imposed by a cost that penalizes the deviation of the
current solution from a prediction.

e Preservation of spatial and temporal discontinuities:
The truncation of the spatial and temporal costs allows
the preservation of discontinuities.

Figure 3 shows an example of the free space obtained with
dynamic programming.

S Experimental results

A suitable application for this method is to determine the
free space while driving through construction sites. The lat-
eral space available for driving might become narrow. In
such a situation, the information provided by free space
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analysis is very valuable. Figures 4(a)-4(f) show the re-
sults on construction sites on freeways, while figures 4(g)
and 4(h) show the results obtained in downtown scenarios.

All the test sequences have VGA resolution. The base-
line of the stereo camera is 0.3 meters. The focal length
is approximately 820 pixels. The speed of the ego-vehicle
varies between 7 and 25 meters per second. The results of
free space are shown as a carpet on the road. The prediction
of the ego-trajectory, based on inertial sensors, is shown in
front of the vehicle. The figures also show overlaid walls,
which constrain the lateral free space available for driving.
The positions of the walls are computed from the obtained
free space. When the lateral free space in front of the ego-
vehicle falls below +1.5 meters from the side mirrors, a
wall at the corresponding position is shown.

The current implementation of the method runs at 20 Hz
on a 3.2 GHz Intel Quad-Core processor.

6 Conclusion

A stereo-based method for the computation of free space
was presented. Dynamic stereo information is obtained by
integrating disparity images over time. This allows the cal-
culation of accurate stochastic occupancy grids. Applying
dynamic programming to a polar occupancy grid, the opti-
mal boundary between free and occupied regions is found.
A final analysis of the free space allows the robust detection
of the free corridor in front of the vehicle. The experimental
results show the accuracy and robustness of the method.
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Figure 4. Experimental results in different
scenarios.

(8]

(9]

(10]

[11]

[12]

[13]

J. Miura, Y. Negishi, and Y. Shirai. Mobile robot map gen-
eration by integrating omnidirectional stereo and laser range
finder. In Proc. of IROS, 2002.

D. Murray and J. J. Little. Using real-time stereo vision
for mobile robot navigation. Autonomous Robots, 8(2):161—
171, 2000.

S. Nedevschi et al. A sensor for uban driving assistance
systems based on dense stereovision. In Intelligent Vehicles
Symposium, 2007.

A. Suppes, F. Suhling, and M. Hotter. Robust obstacle de-
tection from stereoscopic image sequences using kalman fil-
tering. In 23"% DAGM Symposium, 2001.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.
The MIT Press, 2005.

T. Vaudrey, H. Badino, and S. Gehrig. Integrating disparity
images by incorporating disparity rate. In 2nd Workshop
Robot Vision, Auckland, New Zealand, February 2008. To
appear.



