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Abstract— We propose an approach to detect drivable road
area in monocular images. It is a self-supervised approach
which doesn’t require any human road annotations on images
to train the road detection algorithm. Our approach reduces
human labeling effort and makes training scalable. We combine
the best of both supervised and unsupervised methods in
our approach. First, we automatically generate training road
annotations for images using OpenStreetMap1, vehicle pose
estimation sensors, and camera parameters. Next, we train
a Convolutional Neural Network (CNN) for road detection
using these annotations. We show that we are able to generate
reasonably accurate training annotations in KITTI data-set [1].
We achieve state-of-the-art performance among the methods
which do not require human annotation effort.

I. INTRODUCTION

Recognizing the obstacle-free road region to drive in front
of the vehicle (e.g. Figure 1) is a very important information.
It is essential for autonomous driving and useful for advanced
driver assistance systems (ADAS). Researchers have used
various sensors such as laser scanner [2], range scanner,
stereo camera pair [3] and monocular camera [4] for this.
In this paper, we are interested in using images from a
monocular camera to detect the collision-free road area.

The top performing methods [5], [6], [7] which use the
publicly available KITTI benchmark [1] for the performance
evaluation follow the human supervised learning paradigm.
They collect images by driving a vehicle and ask humans to
outline the drivable road area. These labeled images are used
to train a classifier. This classifier is then used to predict free
road space in images at test time.

Adapting these methods to new scenarios is hard because
they require considerable human effort to produce new
training annotations. If the labeled examples for training
can be automatically generated, we can mitigate two major
problems: scalability and cost. In this paper, we are interested
in addressing the following questions: Can we automatically
generate the road annotations without any human interven-
tion and use them to train a road classifier?

A map of the area is essential for navigation while
driving, even for humans. We use this necessary and already
publicly available information along with other localization
sensor information to automatically label images for training.
However, the map usually is very coarse and rife with errors.
This problem is compounded by the presence of dynamic
objects, such as the cars and pedestrians for which there is

1
https://www.openstreetmap.org

Fig. 1: Sample image with the annotated drivable road area.
Note that out of the two parallel road in the image only one
is labeled as drivable. Also, the road region occluded by the
car is not labeled as drivable.

no information available in the map. Also, the localization
sensors employed on the vehicle might be noisy.

The problems outlined above lead to errors in the labeling.
We exploit the appearance features of the image to reduce
the errors in the automatic annotation process. During testing,
we only use image information which allows us to generalize
to areas without GPS or with poor signal quality. Figure 2
shows an overview of our approach and compares it to the
traditional human-supervised paradigm.

Contributions: Our main contributions can be summa-
rized as follows:

• We propose a novel, scalable and cost effective method
to automatically generate drivable road area annotations
using localization sensors (GPS and IMU) on the vehi-
cle and publicly available noisy OpenStreetMap data.

• We train a CNN using these noisy labels for road
detection and outperform all the methods which do not
require human effort for image labeling.

II. RELATED WORK

Monocular Road Detection: The majority of the image
based drivable road detection approaches follow one of
three paradigms: Human-supervised, Self-supervised, and
Unsupervised.

The human-supervised approach is followed by [5], [4],
[7]. They use human-generated annotations to learn a road
model using powerful supervised machine learning algo-
rithms. [5], [7] use Convolutional Neural Networks (CNN),
and [4] uses a 1-D graphical model and mixture of Gaussians.
These approaches are typically the best performing ones.
However, they are costly and unscalable due to the human
effort involved. In our approach, we also use a CNN, but we
reduce the cost of training by removing humans in the image
labeling step.
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Fig. 2: The pipeline of human-supervised and our proposed map-supervised road detection approaches. Human-supervised
approaches use human to label the training data. Whereas, we use publicly available OpenStreetMap data, vehicle pose,
camera parameters and pixel appearance features to label the training data. During testing we only use the image data.

Unsupervised approaches use only a single image at any
given time. These approaches work either by finding road
borders using color and texture information [8], [9] or by
building a color-based model of the road points [10]. Road
boundary detection based methods usually make assumptions
about the shape of the road. Pixel based model methods
assume that the center-bottom part of the road belongs to
road. These approaches work well in highway scenes, but
their performances leave a lot of room for improvements in
urban areas.

Self-supervised algorithms [11], [12], [13] rely on the past
predictions to adapt an existing model or train a model for
the current image. They can be seen as operating between
the human-supervised and unsupervised approaches. These
methods employ very simple models because of the need
to rapidly adapt the model on the fly. [13] uses color based
template matching, [12] and [11] uses color based mixture of
Gaussians. They also suffer from model drifts, so they require
resetting the algorithm after some time. Our approach can be
considered as a part of this category but we train a CNN in
our offline training step.

Using Maps: Maps provide rich information about static
man-made elements of the scene. However, this information
is approximate and noisy. Therefore, [14], [15] used map as a
prior in their scene labeling algorithms. They require human
labeled images for training. [16] uses maps as prior for online
road detection, but their algorithms also require some human
annotations. [17] uses maps to label aerial images and require
map information at the test time. Whereas, we use maps to
label images taken from ground and our classifier does not
need any map information during the testing.

Training with Machine Generated Labels: [18] uses
structural information of a scene predicted by [19] for road
detection. They first segment the image into horizontal and
vertical surfaces and sky. They use these categories to aid
their online road detection. In the experiments, we show that
our approach compares favorably with theirs.

III. APPROACH OVERVIEW

Our goal is to recognize pixels denoting the drivable road
area in a monocular image. As shown in Figure 2, our
approach includes two steps:

• First, we automatically build a set of noisy labeled
images using maps, localization sensor data and camera
parameters. We reduce the annotation noise using pixel
appearance features.

• In the following step, we train a Fully Convolutional
Network using these automatically generated labels.

The main difference between the traditional supervised learn-
ing paradigm and our approach is that we use machine
generated labels to train the classifier, thereby eliminating
the human effort involved.

IV. AUTOMATIC ROAD ANNOTATION

A. Overview

Training a statistical model requires to have labeled in-
stances which are representative for the distribution of data.
We generate the training samples by exploiting information
from maps in the following steps:

• First, we use vehicle pose and maps to reconstruct the
3D scene around the vehicle.

• We then get an initial labeling of the images by project-
ing the reconstructed scene onto the image plane using
a calibrated camera. This initial labeling is too noisy
due to occlusions, and errors in the map data, vehicle
pose and calibration parameters.

• In the third step, we refine this labeling based on pixel
appearance to reduce the error.

We use the publicly available OpenStreetMap (OSM) as the
source of map information.

B. Initial Labeling using OpenStreetMap (OSM)

OSM provides information about static structures existing
in the scene. We use this data for two types of objects:
Roads and buildings. We first reconstruct the 3D scene of a
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100x100m2 area around the vehicle. To populate the scene
with roads and buildings, we use the GPS coordinates of the
boundaries of buildings and coordinates of the center line
of the roads. Other properties such as number of floors in
the building, height of each floor, type of road, number of
lanes, width of each lane etc are also extracted from the
map database. However, since these are not always present,
we make assumptions about them based on the geographic
knowledge (e.g. residential roads have one lane and are 3m
wide). Subsequently, we project this reconstructed scene onto
the image plane using a calibrated camera.

This projection results in each of the pixels in the image
being labeled with: road, building or none. The pixels labeled
as none or building are combined to form the non-road class.
The projected labels are very noisy mainly due to sensor
errors, presence of dynamic objects, and erroneous or absent
lane width data.

Approximate vehicle pose estimation causes errors in the
relative position of the scene with respect to the vehicle. It
causes the projection of labels to be displaced (Figure 3a)
from their actual position. OSM provides information about
the static elements in the scene, but it does not provide
information about the dynamic objects, such as cars and
pedestrians (Figure 3b). The map projection mislabels dy-
namic objects that occlude the road. Erroneous or absent
lane width data causes over/under estimation of the extent
of a road (Figure 3c).

C. Label Refinement

To reduce the noise in the initial labeling step, the images
present in the training set are relabeled such that pixels with
similar appearance are assigned to the same label.

We use the following approach: First, we cluster the pixels
based on appearance and then we assign a label to each
cluster based on the statistics of the pixels in that cluster.
Assume we have K clusters, for each cluster i, nr

i

denotes
the number of road pixels, nnr

i

denotes the number of non-
road pixels after the initial labeling step.

One way to label a cluster i is to define a ratio r
i

such
that r

i

= nr
i

/nnr
i

and label a cluster i road if r
i

� 1 and
non-road if r

i

< 1. However, it will fail if the number of
non-road pixels in a data set is much greater than road pixels,
since most of the clusters will be assigned to non-road in this
case. Therefore, in order to normalize the number of pixels
for both classes, we modify the ratio r

i

to rmod

i

as follows
and use it:

rmod

i

=

nr
i

/
KP
i=1

nr
i

nnr
i

/
KP
i=1

nnr
i

(1)

We use color features to represent the appearance of pixels.
In particular, we use HSI and YCbCr color spaces. To
achieve robustness from shadows, we only use the H and
S channels from HSI space, and Cb and Cr channels from
YCbCr space.

To reduce the false positives for the road class, we
restrict the candidate road pixels. We divide the image into
superpixels by thresholding the gPb [20] field, using a very
low threshold value (0.01 in our case). We observe that the
true road pixels are close to the OSM projected road pixels.
Therefore, we consider a superpixel as road candidate if more
than 10% of its area was predicted as road in initial labeling.
We consider all the pixels present in the road candidate
superpixel as road candidate pixels.

Some images contain multiple roads separated by a di-
vider. We are looking for the drivable road area, so detecting
any other road except our current road is a false positive. As
drivable road area, we select the largest connected compo-
nent in the image labeled as road. Figure 4 shows results
after each step of label refinement for a sample image. It
demonstrates that we are able to reduce the noise in the road
annotations.

D. Determining Number of Clusters (K)

We use K-means clustering which requires the number of
clusters (K) as input. We cannot use the standard cross val-
idation approach: Select K which maximizes the validation
set performance, because we do not have any human labeled
ground truth data. We use the L method [21] to determine K.
This method finds the knee of the K vs clustering evaluation
metric graph by fitting a pair of straight lines to it. We use
the Sum of Squared Error (SSE) as the evaluation metric.

Assume that there are n candidates {k1, k2, · · · , kn} for
K, such that k1 > k2 > · · · > k

n

. The L method determines
the knee in the graph of K vs SSE as follows: For each
i = {2, · · · , n � 2}, it splits the set of candidates into two
parts L

i

= {k1, · · · , ki} and R
i

= {k
i+1, · · · , kn}. Then, it

fits separate lines to the parts of graph belonging to these
sets and calculates the Root Mean Squared Error (RMSE)
for those lines. Lets denote RMSE for L

i

and R
i

as rmse
Li

and rmse
Ri respectively. The the total RMSE at pivot k

i

(rmse
ki ) is a weighted sum of two RMSEs:

rmse
ki =

k
i

� k1
k
n

� k1
rmse

Li +
k
n

� k
i+1

k
n

� k1
rmse

Ri (2)

The knee point is the k
i

which minimizes the rmse
ki .

K = argmin
ki

rmse
ki (3)

V. ROAD DETECTION

A. Model

We use a Fully Convolutional Network (FCN) for road
detection. A FCN only contains convolutional layers so it
could produce output at each pixel. Fully connected layers in
a network can be easily converted into convolutional layers.
Each node in the fully connected layer can treated as a filter
whose spatial size is same as the number of edges incident
on that node. For example the first fully connected layer in
[22] has 4096 nodes and each node has 49 incident edges.
So this can be considered as a convolutional layer with 4096
filters with spatial size of 7x7.

We use the FCN proposed by [23] for our purpose. They
modify and convert the 16-layer network from [22] to a FCN.
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(a) (b) (c)

Fig. 3: Errors in the initial road labeling. Examples of errors: (a) due to sensor noise (road region is shifted to the right).
(b) due to dynamic objects (mislabeled cars). (c) due to erroneous lane width data (mislabeled sidewalk).

(a) (b) (c) (d)

Fig. 4: (a) Initial labeling using OpenStreetMap. (b) Label Refinement using K-Means. (c) Improved Labeling after restricting
the allowed road pixels. (d) Final Labeling after removing the non-drivable parallel road.

We provide a brief description of the modifications. See [23]
for further details.

The FCN we get from directly converting the network
from [22] produces a very coarse output with stride of 32.
To increase the resolution [23] skip subsampling after the
first three max-pooling layers in the network and modify
the convolutional filters in the layers that follow them by
introducing zeros to increase their size. The size of filters of
the last three convolutional layers is increased by a factor of
2 and size of the fully connected layers is increased by 4.

After converting the network of [22] to a fully convolu-
tional one, the first fully connected layer has 4096 filters
of large spatial size of 7x7. This becomes a computational
bottleneck. Therefore, [23] reduces the number of filters to
1024 and spatial size to 3x3 by subsampling. The filter size
is reduced to 3x3 such that the spatial receptive field of the
network remains the same.

The final layer of our adaptation of the network has 2
channels (one for road and another for non-road). The final
output has a stride of 8 so we use bi-linear interpolation to
increase its resolution to the image size.

B. Training

We use the publicly available code2 by [23] for imple-
menting and training the network. We use soft-max loss at
every pixel for back propagation. The network by [22] is
already trained on image classification using ImageNet data
[24]. We fine-tune the network with initial learning rate of
0.001 and batch size of 5. After every 5 epochs we multiply
the learning rate by 0.1. We use a momentum of 0.9. For
data augmentation we use mirroring and cropping.

VI. EXPERIMENTS

A. Dataset

We use the KITTI data set [25], [1] to evaluate our
approach. It contains a diverse set of road annotations of
various different scenes taken in a span of various days. It
consist of two sets: train set containing 289 image and test
set containing 290 images.

2
https://bitbucket.org/deeplab/deeplab-public/src

We use the evaluation protocol defined by [1]: Results are
evaluated in birds eye view (BEV) using per pixel metrics.
We use Precision (PRE), Recall (REC) and F-measure (F) to
evaluate the performance of automatic labeling. In addition
to these metrics, we also use Average Precision (AP), False
Positive Rate (FPR) and False Negative Rate (FNR) to
evaluate road detection.

B. Analyzing Performance of Automatic Labeling Method

The evaluations in this section are done by comparing with
the available human annotated road labels for train set.

1) Determining Number of Clusters K: The first step in
our algorithm is to find the number of clusters (K) required
for the clustering algorithm. Figure 6 shows the graph of K
vs Sum of squared error (SSE). To find the knee of this
graph, we plot the graph of K vs Total RMSE using the L
method [21] (See Figure 6). Based on this, we select K = 70
since it has the minimum RMSE.

Method F PRE REC

Our Approach 85.51 84.16 86.90
Co-Labeling [26] 84.74 88.02 81.69

Map Projection 78.93 74.97 83.34

TABLE I: Quality of the machine generated labels.

2) Results: Table I shows that the label refinement step
is able to reduce the noise in the initial projection of
OpenStreetMap data. We also compare our label refinement
method with the co-labeling approach of [26] which extends
the fully connected conditional random field of [27] to label
a large set of images simultaneously.

We use the initial labeling obtained by projecting the map
data onto the image plane as the unary term. To set the
pairwise term, we use the same appearance features as we
used in our approach. We also select the largest connected
component as the final drivable road region which is the
same as our approach. We give the co-labeling approach a
slight advantage by setting the model parameters such that
they maximize the F-measure on train set. Both methods
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(a) (b) (c) (d)

Fig. 5: Qualitative results for the automatic labeling of images. Top road displays results after initial map projection and
bottom row shows results after our label refinement approach. In (a), our approach is able to extend the road annotation to
cover the whole road. In (b), we successfully removed the incorrectly labeled cars from the road class. Figures (c) and (d)
illustrate failure cases where our approach incorrectly removed most of the road pixels and kept the non-road pixels. The
color coding is as follows: Green - True Positive, Red - False Negative, Blue - False Positive for road.
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Fig. 6: Plots on train set to determine number of clusters. We
can see that knee of the K vs SSE graph occurs at K = 70
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Fig. 7: Effect of different values of K on our proposed
automatic labeling approach.

are based on the assumption that similar pixels should be
assigned to the same label. We see that our method and co-
labeling have similar performances. However, our method
does not require any ground truth to select model parameters.

3) Qualitative Results: We show some successful cases
where we are able to increase the quality of the initial
annotations by map projection using appearance features in
Figure 5a and 5b. Figure 5c and 5d shows some of the
failure cases. The main reasons for the failures are: Extreme
shadows, and similar appearance of the road and sidewalk.

4) Ablative Analysis: There are four steps in the algo-
rithm: Projection of map data onto image plane (Map),

Step F PRE REC

Map 78.93 74.97 83.34
Cluster 76.41 63.90 95.01
GPB 84.62 81.79 87.65
Component 85.51 84.16 86.90

TABLE II: Quality of machine generated labels after each
step of the proposed algorithm. For details see VI-B.4.

label refinement using clustering (Cluster), restricting road
candidate pixels using gPb (GPB) and finding the largest
connected component (Component). Table II shows the re-
sults after each step. From this, we observe that the clustering
step provides a boost in true positives. The number of false
positives are reduced by computing the road candidate pixels
and finding the largest connected component.

5) Effect of K: Figure 7 shows the performance of our
automatic labeling approach with respect to the number of
clusters K. We can see that for K � 70 the F-measure is
very similar for all K. This indicates that after a specific
value of K, which is in the order of 100, our approach is
robust to the number of clusters.

C. Analyzing Performance of the Road Detection

We train the Fully Convolutional Network (FCN) using
the images from train set and automatically generated road
labels. We evaluate on the test set. During testing we only
use monocular color images.

In Table III, we can see that the FCN trained with
refined labels (With Refinement) perform better than the one
with labels we directly get from map projection (Without
Refinement). This is because the refined labels are of better
quality. We can also see that we outperform [18]. They
also train a CNN using machine generated labels and uses
only monocular image for testing. However, their CNN is
trained to predict the geometric structure (sky, vertical and
horizontal) in the image which is them used to detect road.
To build a road model for each image they assume that the
middle bottom part of the image is road.

Next, we compare our approach with other methods which
do not require human supervision but use other sensors. In
Table III, RES3D+VELO [2] uses laser data from Velodyne
sensor for this task and GRE3D+SELAS uses a stereo pair.
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Method AP (") MaxF (") PRE (") REC (") FPR (#) FNR (#)

Testing with Monocular Images

Proposed - With Refinement 89.96 87.80 86.01 89.66 10.34 10.34
Proposed - Without Refinement 82.20 83.37 80.03 86.99 13.01 13.01
CN [18] 78.80 79.02 76.64 81.55 13.69 18.45

Testing with Other Sensors

GRES3D+SELAS 86.86 85.09 82.27 88.10 10.46 11.90
RES3D+VELO [2] 78.34 86.58 82.63 90.92 10.43 9.08

Training with Human Annotations

Fully Supervised (Proposed) 90.96 91.61 91.04 92.20 5.00 8.71

TABLE III: Road detection performance of various methods on the test set. Note that, " denotes higher is better and #
denotes lower is better.

We achieve higher performance than these methods, thus
establishing a new state of the art among approaches which
do not require human supervision.

Finally, in Table III (Fully Supervised) we report the
upper-bound performance of our classifier (FCN). In this
case, the training is done with human annotated, ground truth
labels. We can see that the FCN trained with automatically
generated labels is able to achieve close to the upper-bound
performance in terms of average precision and recall.

VII. CONCLUSION

We presented a map-supervised, monocular image-based
drivable road area detection system. Our approach reduces
the human image labeling effort and makes the supervised
road detection algorithms scalable and cost effective. It
can automatically generate training labels for drivable road
recognition using the noisy data from publicly available
OpenStreetMap and other localization sensors on the vehicle.

In the future, we plan to investigate the use of temporal
information present in videos to improve the labeling step.
We could use the motion information present in the videos
to remove the false positives on the moving vehicles. This
would be very useful in cluttered scenes where large part
of road is occluded by moving vehicles. We would also like
to extend our system for extreme weather conditions such
as rain and snow, which are currently not handled by our
system. For this, we plan to investigate 3D features from
videos and CNN features to distinguish between the road
and background pixels.
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